Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )
Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )
Ta có : ( 7A + N ) : 7 ( dư N )
( 7B + N ) : 7 ( dư N )
=> ( 7A + N ) - ( 7B + N )
= 7A - 7B
= 7 . ( A - B ) chia hết cho 7
Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .
B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2
Gọi 2 số đó là 3k+1 và 3h+2
Ta có : 3k+1 : 3 ( dư 1 )
3h+2 : 3 ( dư 2 )
=> ( 3k+1 ) + ( 3h+2 )
= 3k+ 3h + 3
= 3 . ( k + h + 1 )
Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
Đọc thì nhớ tk nhá
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
Vì a;b \(⋮̸\) cho 3
\(\Rightarrow\)a; b chia 3 dư 1 hoặc dư 2
+ khi a; b chia 3 dư 1 \(\Rightarrow\)a= 3k + 1 ; b = 3q + 1 (k; q \(\in\)N* )
\(\Rightarrow\)ab - 1 = (3k + 1)(3q +1) -1 = 9kq + 3k + 3q + 1 - 1 = 9kq + 3k + 3q \(⋮\)3
+ khi a; b chia 3 dư 2 \(\Rightarrow\)a = 3k + 2 ; b = 3q +2 (k; q \(\in\)N* )
\(\Rightarrow\)ab - 1 = (3k + 2)(3q +2) -1 = 9kq + 3k + 3q + 4 - 1 = 9kq + 3k + 3q +3 \(⋮\)3
\(\Rightarrow\)ĐPCM
vậy ............
~~ học tốt ~~
Nếu là số dư khác nhau thì a:3 dư 1,b:3 dư 2 hoặc ngược lại.
Nếu vậy thì (a+b) chia hết cho 3 vì số dư là 1+2=3 chia hết cho 3
Đây chỉ là mình nghĩ sao viết vậy thôi nha!
Xét các trường hợp:
TH1: a = 3k + 1; b = 3k + 2. ( k là số tự nhiên)
=> a + b = 3k + 1 + 3k + 2 = 6k + 3 = 3.( k + 1 )
Vì 3 chia hết cho 3 => 3.( k + 1 ) chia hết cho 3 hay a + b chia hết cho 3
TH2: a = 3k + 2; b = 3k + 1. ( k là số tự nhiên)
=> a + b = 3k + 2 + 3k + 1 = 6k + 3 = 3.( k + 1 )
Vì 3 chia hết cho 3 => 3.( k + 1 ) chia hết cho 3 hay a + b chia hết cho 3
Vậy ( a + b ) chia hết cho 3
Khi chia cho 3 thì có 2 số dư là 2 và 1
Ta có: a = 3k +1 (k thuộc N)
b = 3q +2 (q thuộc N)
=> a+b = 3k +1 + 3q +2 = 3k +3q + 1 + 2 = 3k +3q + 3 = 3 (k+q+1) chia hết cho 3
Nhấn đúng cho mk nha!!!!!!!!!