Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với m = 2 ta có hàm số
- Tập xác định : D = R\{-1}.
- Sự biến thiên :
⇒ Hàm số đồng biến trên (-∞ ; -1) và (-1 ; +∞).
+ Cực trị : hàm số không có cực trị
+ Tiệm cận :
⇒ y = 1 là tiệm cận ngang của đồ thị hàm số
⇒ x = -1 là tiệm cận ngang của đồ thị hàm số.
+ Bảng biến thiên :
- Đồ thị :
a) Tập xác định : R\ {1}; y′=−4(x−1)2<0,∀x≠1y′=−4(x−1)2<0,∀x≠1 ;
Tiệm cận đứng : x = 1 . Tiệm cận ngang : y = 1.
Bảng biến thiên :
Đồ thị như hình bên.
b) Tập xác định : R \{2}; y′=6(2x−4)2>0,∀x≠2y′=6(2x−4)2>0,∀x≠2
Tiệm cận đứng : x = 2 . Tiệm cận ngang : y = -1.
Bảng biến thiên :
Đồ thị như hình bên.
c) Tập xác định : R∖{−12}R∖{−12}; y′=−5(2x+1)2<0,∀x≠−12y′=−5(2x+1)2<0,∀x≠−12
Tiệm cận đứng : x=−12x=−12 . Tiệm cận ngang : y=−12y=−12.
Bảng biến thiên :
Đồ thị như hình bên.
a) Hàm số y=
Tập xác định: (0; +∞).
Sự biến thiên: > 0, ∀x ∈ (0; +∞) nên hàm số luôn luôn đồng biến.
Giới hạn đặc biệt: = 0, = +∞, đồ thị hàm số có tiệm cận.
Bảng biến thiên
Đồ thị( hình bên). Đồ thị hàm số qua (1;1), (2;).
b) y= .
Tập xác định: ℝ \{0}.
Sự biến thiên: < 0, ∀xj# 0, hàm nghich biến trong hai khoảng (-∞;0) và (0; +∞).
Giới hạn đặc biệt:= +∞, = -∞, = 0, = 0; đồ thị hàm số nhận trục tung làm tiệm cận đứng, trục hoành làm tiệm cận ngang.
Bảng biến thiên
Đồ thị ( hình dưới). Đồ thị qua (-1;-1), (1;1), (2; ), ( -2; ). Hàm số đồ thị đã cho là hàm số lẻ nên đối xứng qua gốc tọ độ.
a) Hoành độ giao điểm của đồ thị hàm số \(y=\dfrac{2x+1}{2x-1}\) và \(y=x+2\) là nghiệm của phương trình :
\(\dfrac{2x+1}{2x-1}=x+2\Leftrightarrow\dfrac{2x+1}{2x-1}-x-2=0\)
\(\Leftrightarrow\dfrac{-2x^2-x+3}{2x-1}=0\)\(\Leftrightarrow\left\{{}\begin{matrix}-2x^2-x+3=0\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Với \(x=1\) thì \(y=1+2=3;x=-\dfrac{3}{2}\) thì \(y=-\dfrac{3}{2}+2=\dfrac{1}{2}\)
Vậy tọa độ hai giao điểm là \(A\left(1;3\right),B\left(-\dfrac{3}{2};\dfrac{1}{2}\right)\)
y = - x + 2 x + 2
+) Tập xác định: D = R\{-2}
+) Ta có:
Bảng biến thiên:
Hàm số nghịch biến trên các khoảng (− ∞ ; −2), (−2; + ∞ )
+) Tiệm cận đứng x = -2 vì
Tiệm cận ngang y = -1 vì
Giao với các trục tọa độ: (0; 1); (2; 0)
Đồ thị
a) \(y=\dfrac{x+1}{x-2}\)
\(y'=-\dfrac{3}{\left(x-2\right)^2}< 0\forall x\inℝ\ \left\{2\right\}\)
=> hàm số nghịch biến trên \(\left(-\infty;2\right)\) và \(\left(2;+\infty\right)\)
b) \(y=\dfrac{2x+1}{x-1}\)
\(y'=-\dfrac{3}{\left(x-1\right)^2}< 0\forall x\inℝ\ \left\{1\right\}\)
=> hàm số nghịch biến trên \(\left(-\infty;1\right)\) và \((1;+\infty)\)