K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 6 2019

Với hai số thực bất kì \(4< a< b\) ta có:

\(y\left(b\right)-y\left(a\right)=\sqrt{b-4}-\sqrt{a-4}+\sqrt{b+1}-\sqrt{a+1}\)

\(=\frac{b-a}{\sqrt{b-4}+\sqrt{a-4}}+\frac{b-a}{\sqrt{b+1}+\sqrt{a+1}}=\left(b-a\right)\left(\frac{1}{\sqrt{b-4}+\sqrt{a-4}}+\frac{1}{\sqrt{b+1}+\sqrt{a+1}}\right)\)

\(\left\{{}\begin{matrix}b>a\Rightarrow b-a>0\\\frac{1}{\sqrt{b-4}+\sqrt{a-4}}+\frac{1}{\sqrt{b+1}+\sqrt{a+1}}>0\end{matrix}\right.\)

\(\Rightarrow y\left(b\right)-y\left(a\right)>0\) \(\forall b>a\)

\(\Rightarrow y\) đồng biến trên miền đã cho

19 tháng 9 2020

de qua de

2 tháng 8 2018

1)\(\forall x1,x2\in\left(1,+\infty\right),x1\ne x2\)

\(f\left(x1\right)-f\left(x2\right)=\dfrac{1}{1-x1}-\dfrac{1}{1-x2}=\dfrac{1-x2-1+x1}{\left(1-x1\right)\left(1-x2\right)}=\dfrac{x1-x2}{\left(1-x1\right)\left(1-x2\right)}\)

\(\dfrac{f\left(x1\right)-f\left(x2\right)}{x1-x2}=\dfrac{\dfrac{x1-x2}{\left(1-x1\right)\left(1-x2\right)}}{x1-x2}=\dfrac{1}{\left(1-x1\right)\left(1-x2\right)}\)

\(x1,x2\in\left(1;+\infty\right)\)nên \(\left\{{}\begin{matrix}x1>1\\x2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-x1< 0\\1-x2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{\left(1-x1\right)\left(1-x2\right)}>0\)

Vậy hàm số đồng biến trên \(\left(1;+\infty\right)\)

14 tháng 10 2020

a, Lấy \(x_1;x_2\in R\left(x_1\ne x_2\right)\)

Ta có \(y_1-y_2=3x_1-3x_2\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=3>0\)

\(\Rightarrow\) Hàm số đồng biến trên R

b, Lấy \(x_1;x_2\in\left(0;+\infty\right)\left(x_1\ne x_2\right)\)

Ta có \(y_1-y_2=\sqrt{x_1}-\sqrt{x_2}=\frac{x_1-x_2}{\sqrt{x_1}+\sqrt{x_2}}\)

\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=\frac{1}{\sqrt{x_1}+\sqrt{x_2}}>0\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(0;+\infty\right)\)

14 tháng 10 2020

d, Lấy \(x_1;x_2\in\left(-\infty;-1\right)\left(x_1\ne x_2\right)\)

\(\Rightarrow y_1-y_2=\frac{4}{x_1+1}-\frac{4}{x_2+1}=-\frac{4\left(x_1-x_2\right)}{\left(x_1+1\right)\left(x_2+1\right)}\)

\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=-\frac{4}{\left(x_1+1\right)\left(x_2+1\right)}\)

Do \(x_1;x_2\in\left(-\infty;-1\right)\Rightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)

\(\Rightarrow I=-\frac{4}{\left(x_1+1\right)\left(x_2+1\right)}< 0\)

\(\Rightarrow\) Hàm số nghịch biến trên \(\left(-\infty;-1\right)\)

Lấy \(x_1;x_2\in\left(-1;+\infty\right)\left(x_1\ne x_2\right)\)

Do \(x_1;x_2\in\left(-1;+\infty\right)\Rightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)

\(\Rightarrow I=-\frac{4}{\left(x_1+1\right)\left(x_2+1\right)}< 0\)

\(\Rightarrow\) Hàm số nghịch biến trên \(\left(-1;+\infty\right)\)

8 tháng 11 2021

500x600000000000000000000:9870x12345976666=???

\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\left|2x_1-4\right|+x_1-\left|2x_2-4\right|-x_2}{x_1-x_2}\)

\(=\dfrac{2\left|x_1-2\right|-2\left|x_2-2\right|+x_1-x_2}{x_1-x_2}\)

Khi x1<2; x2<2 thì x1-2<0; x2-2<0

=>\(A=\dfrac{2\left(2-x_1\right)-2\left(2-x_2\right)+x_1-x_2}{x_1-x_2}\)

\(=\dfrac{4-2x_1-4+2x_2+x_1-x_2}{x_1-x_2}=-1< 0\)

=>Hàm số đồng biến

Khi x1>2; x2>2 thì \(A=\dfrac{2\left(x_1-2\right)-2\left(x_2-2\right)+x_1-x_2}{x_1-x_2}\)

\(=\dfrac{2x_1-4-2x_2+4+x_1-x_2}{x_1-x_2}=1>0\)

=>Hàm số đồng biến