Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong khai triển \(P\left(x\right)=\left(3-2x\right)^9\) , hãy tính tổng các hệ số của đa thức P(x).
Tổng hệ số trong khai triển \(P\left(x\right)\) luôn luôn bằng \(P\left(1\right)\)
Do đó tổng hệ số là: \(\left(3-2.1\right)^9=1\)
Ta có ( 2 + 3 x ) 9 = ∑ k = 0 9 C 9 k 2 9 − k ( 3 x ) k = ∑ k = 0 9 C 9 k 2 9 − k 3 k . x k
⇒ h ( x ) = ∑ k = 0 9 C 9 k 2 9 − k 3 k x k + 1
Số hạng chứa x 7 ứng với giá trị k thỏa mãn k +1=7
Vậy hệ số chứa x 7 là: C 9 6 2 3 3 6 = 489888 .
Chọn đáp án D
\(C_n^0+C_n^1+C_n^2=11\)
\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)
\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)
\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)
\(5k-8=7\Rightarrow k=3\)
Hệ số: \(C_4^3=4\)
15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)
18/ \(x.x^k=x^7\Rightarrow k=6\)
\(C^6_9.3^6.2^3=489888\)
19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)
C18 , c19 là lm sao vậy ạ ? Mk ko hiểu 2 bài này nơi
\(\left(3+2x\right)^9=\sum\limits^n_{k=0}C^k_9.\left(2x\right)^{9-k}.3^k\)
\(\Rightarrow9-k=7\Rightarrow k=2\)
Vậy hệ số \(x^7\) là \(C^2_9.2^7.3^2=41472\)