K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2021

a. \(\left(x+3\right)^2=x^2+2x.3+3^2=x^2+6x+9\)

b. \(\left(2x-1\right)^2=\left(2x\right)^2-2.2x.1+1^2=4x^2-4x+1\)

c. \(\left(x+2\right)^3=x^3+3x^2.2+3x.2^2+2^3=x^3+6x^2+12x+8\)

d. \(\left(x-2\right)^3=x^3-3x^2.2+3x.2^2-2^3=x^3-6x^2+12x-8\)

e. \(\left(1-3x\right)^2=1^2-2.1.3x+\left(3x\right)^2=1-6x+9x^2\)

f. \(\left(2x+1\right)^3=\left(2x\right)^3+3\left(2x\right)^2.1+3.2x.1^2+1^3=8x^3+12x^2+6x+1\)

g. \(\left(3-x\right)^3=3^3-3.3^2x+3.3x^2-x^3=27-27x+9x^2-x^3\)

20 tháng 6 2017

a) \(\left(2x^3-y^2\right)^3\)

\(=\left(2x^3\right)^3-3\cdot\left(2x^3\right)^2\cdot y^2+3\cdot2x^3\cdot\left(y^2\right)^{^2}-\left(y^2\right)^3\)

\(=8x^9-3\cdot4x^6y^2+3\cdot2x^3y^4-y^6\)

\(=8x^9-12x^6y^2+6x^3y^4-y^6\)

b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

c) \(\left(x+2y+z\right)\left(x+2y-z\right)\)

\(=\left(x+2y\right)^2-z^2\)

\(=x^2+4xy+4y^2-z^2\)

d) \(\left(2x^3y-0,5x^2\right)^3\)

\(=\left(2x^3y-\dfrac{1}{2}x^2\right)^3\)

\(=8x^9y^3-6x^8y^2+\dfrac{3}{2}x^7y-\dfrac{1}{8}x^6\)

e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)

\(=\left(x^2-3\right)\left(4x^2+9\right)\)

\(=4x^4+9x^2-12x^2-27\)

\(=4x^4-3x^2-27\)

f) \(\left(2x-1\right)\left(4x^2+2x+1\right)\)

\(=\left(2x\right)^3-1^3\)

\(=8x^3-1\)

20 tháng 6 2017

\(a,\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)\(b,\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)

\(c,\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)\(d,\left(2x^3y-0,5x^2\right)^3=8x^9y^3-6x^4y^2x^2+3x^3yx^4-0,125x^6=8x^9y^3-6x^6y^2+3x^7y-0,125x^6\)

19 tháng 6 2017

Gọi diện tích hình vuông là Shv.Khi đó mỗi ô vuông nhỏ có diện tích là Shv9 . Ta thấy ngay diện tích tam giác ABK bằng một nửa diện tích hình chữ nhật AKBH và bằng Shv9 .

Tương tự SAID=SDNC=SBMC=SABK=Shv9  và SIKMN=Shv9 

Vậy thì SABCD=4.Shv9 +Shv9 =59 Shv

Vậy diện tích phần còn lại bằng 49 Shv

Suy ra diện tích hình vuông ABCD bằng 54  diện tích phần còn lại.

k mình nha

16 tháng 9 2021

\(a,=x^2+x+\dfrac{1}{4}\\ b,=4x^2+2x+\dfrac{1}{4}\\ c,=x^2-2+\dfrac{1}{x^2}\\ d,=4x^2+\dfrac{8}{3}x+\dfrac{4}{9}x^2\\ e,=a^2-1\\ f,=25x^4-4\)

16 tháng 9 2021

\(a,\left(x+\dfrac{1}{2}\right)^2=x^2+x+\dfrac{1}{4}\)

\(b,\left(2x+\dfrac{1}{2}\right)^2=4x^2+2x+\dfrac{1}{4}\)

\(c,\left(x-\dfrac{1}{x}\right)^2=x^2-2+\dfrac{1}{x^2}\)

\(d,\left(\dfrac{2x+2}{3x}\right)^2=\dfrac{\left(2x+2\right)^2}{9x^2}=\dfrac{4x^2+8x+4}{9x^2}\)

\(e,\left(a-1\right).\left(a+1\right)=a^2-1\)

\(f,\left(5x^2-2\right).\left(5x^2+2\right)=25x^4-4\)

4 tháng 9 2020

Áp dụng công thức : (A + B)3 = A3 + 3A2B + 3AB2 + B3

(A - B)3 = A3 - 3A2B + 3AB2 -B3

a) (3x + 1)3 = (3x)3 + 3.(3x)2.1 + 3.3x.1 + 13 = 27x3 + 27x2 + 9x + 1

b) \(\left(\frac{x}{3}-1\right)^3=\left(\frac{x}{3}\right)^3-3\cdot\left(\frac{x}{3}\right)^2\cdot1+3\cdot\left(\frac{x}{3}\right)\cdot1^2-1^3\)

\(=\frac{x^3}{27}-3\cdot\frac{x^2}{9}\cdot1+3\cdot\frac{x}{3}\cdot1-1\)

\(\frac{x^3}{27}-\frac{x^2}{3}+x-1\)

c) \(\left(2x-\frac{1}{x}\right)^3=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot\frac{1}{x}+3\cdot2x\cdot\left(\frac{1}{x}\right)^2-\left(\frac{1}{x}\right)^3\)

\(=8x^3-3\cdot4x^2\cdot\frac{1}{x}+6x\cdot\frac{1}{x^2}-\frac{1}{x^3}\)

\(=8x^3-12x+\frac{6}{x}-\frac{1}{x^3}\)

d) \(\left(-y^2+3x\right)^3=\left(3x-y^2\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot y^2+3\cdot3x\cdot y^4-y^6\)

= 27x3 - 27x2y+ 9xy4 - y6

= -y6 + 9xy4 - 27x2y2 + 27x3

Tương tự câu cuối :>

a) Ta có: \(\left(x+1\right)^3\)

\(=x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3\)

\(=x^3+3x^2+3x+1\)

b) Ta có: \(\left(2x+3\right)^3\)

\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)

\(=8x^3+3\cdot4x^2\cdot3+27\cdot2x+27\)

\(=8x^3+36x^2+54x+27\)

c) Ta có: \(\left(x+\frac{1}{2}\right)^3\)

\(=x^3+2\cdot x^2\cdot\frac{1}{2}+2\cdot x\cdot\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3\)

\(=x^3+x^2+\frac{1}{2}x+\frac{1}{8}\)

d) Ta có: \(\left(x^2+2\right)^3\)

\(=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2+2^3\)

\(=x^6+6x^4+12x^2+8\)

e) Ta có: \(\left(2x+3y\right)^3\)

\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3y+3\cdot2x\cdot\left(3y\right)^2+\left(3y\right)^3\)

\(=8x^3+36x^2y+54xy^2+27y^3\)

f) Ta có: \(\left(\frac{1}{2}x+y^2\right)^3\)

\(=\left(\frac{1}{2}x\right)^3+3\cdot\left(\frac{1}{2}x\right)^2\cdot y^2+3\cdot\frac{1}{2}x\cdot\left(y^2\right)^2+\left(y^2\right)^3\)

\(=\frac{1}{8}x^3+\frac{3}{4}x^2y^2+\frac{3}{2}xy^4+y^6\)

a) Ta có: \(\left(x-3\right)^3\)

\(=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)

\(=x^3-9x^2+27x^2-27\)

b) Ta có: \(\left(2x-3\right)^3\)

\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2-3^3\)

\(=8x^3-36x^2+54x-27\)

c) Ta có: \(\left(x-\frac{1}{2}\right)^3\)

\(=x^3-3\cdot x^2\cdot\frac{1}{2}+3\cdot x\cdot\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3\)

\(=x^3-\frac{3}{2}x^2+\frac{3}{4}x-\frac{1}{8}\)

d) Ta có: \(\left(x^2-2\right)^3\)

\(=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2-2^3\)

\(=x^6-6x^4+12x^2-8\)

e) Ta có: \(\left(2x-3y\right)^3\)

\(=\left(2x\right)^3-2\cdot\left(2x\right)^2\cdot3y+2\cdot2x\cdot\left(3y\right)^2-\left(3y\right)^3\)

\(=8x^3-24x^2y+36xy^2-27y^3\)

f) Ta có: \(\left(\frac{1}{2}x-y^2\right)^3\)

\(=\left(\frac{1}{2}x\right)^3-3\cdot\left(\frac{1}{2}x\right)^2\cdot y^2+3\cdot\frac{1}{2}x\cdot\left(y^2\right)^2-\left(y^2\right)^3\)

\(=\frac{1}{8}x^3-\frac{3}{4}x^2y^2+\frac{3}{2}xy^4-y^6\)

19 tháng 7 2017

giải

a/(x+2)^3=x^3+3.x^2.2+3.x.2^2+2^3

19 tháng 7 2017

(2x+1)^3=2x^3+3.2x^2.1+3.2x.1^2+1^3

29 tháng 8 2020

a. \(\left(2+xy\right)^2=x^2y^2+4xy+4\)

b. \(\left(5-x^2\right)\left(5+x^2\right)=25+5x^2-5x^2-x^4=-x^4+25\)

c. \(\left(2x-y\right)\left(4x^2+2xy+y^2\right)=8x^3+4x^2y+2xy^2-4x^2y-2xy^2-y^3\)

\(=8x^3-y^3\)

d. \(\left(5-3x\right)^2=25-30x+9x^2\)

e. \(\left(5x-1\right)^3=125x^3-75x^3+15x-1\)

f. \(\left(x+3\right)\left(x^2-3x+9\right)=x^3-3x^2+9x+3x^2-9x+27=x^3+27\)

h. \(\left(2x^2+3y\right)^2=4x^4+12x^2y+9y^2\)

29 tháng 8 2020

a) (2+xy)2 = 22+4xy+(xy)2 = 4 + 4xy +x2y2

b)  ( 5 - x^2 ) . ( 5 + x^2 ) = 52-x4=25-x4

c) ( 2x - y ) . ( 4x^2 + 2xy + y^2 )  = 8x3-y3

d)(5-3x)2=52-2.5.3x+9x2=25-30x+9x2

e) (5x-1)3=(5x)3-3.(5x)2.1+3.5x.1-1 =125x3-75x2+15x-1

f) (x+3)(x2-3x+9)=(x+3)(x2-3x+32)=x3+27

g) -x3+3x2-3x+1 =(−x+1)(x−1)(x−1)= -(x-1)3

h) (2x2+3y)2=4x4+2.2x2.3y+9y2=4x4+12x2y+9y2

25 tháng 7 2018

\(a.\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\\ =\left(2x\right)^3-3^3-\left[\left(2x\right)^3+3^3\right]\\ =8x^3-9-\left(8x^3+9\right)\\ =8x^3-9-8x^3-9=-18\)

\(b.\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\ =x^3+1-\left(x^3-1\right)\\ =x^3+1-x^3+1=2\)

\(c.\left(3x-1\right)\left(3x+1\right)-\left(3x-2\right)^2\\ =9x^2-1-\left(9x^2-12x+4\right)\\ =9x^2-1-9x^2+12x-4\\ =12x-5\)

\(d.\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\\ =\left(2x-3\right)\cdot\left[\left(2x-3\right)-\left(2x+3\right)\right]\\ =\left(2x-3\right)\cdot\left(2x-3-2x-3\right)\\ =\left(2x-3\right)\cdot\left(-6\right)\\ =-12x\cdot18\)

\(e.\left(3x-4\right)^2-\left(2x+4\right)^2\\ =9x^2-24x+16-\left(4x^2+16x+16\right)\\ =9x^2-24x+16-4x^2-16x-16\\ =5x^2-40x\)

\(f.\left(3x-5\right)^3-\left(3x+5\right)^3\\ =27x^3-135x^2+225x-125-\left(27x^3+135x^2+225x+125\right)\\ =27x^3-135x^2+225x-125-27x^3-135x^2-225x-125\\ =-270x^2-250\)

\(g.\left(2x-1\right)^2-\left(3x-1\right)^2\\ =4x^2-4x+1-\left(9x^2-6x+1\right)\\ =4x^2-4x+1-9x^2+6x-1\\ =-5x^2+2x\)

\(h.\left(x-2y\right)\left(x^2+2xy+4y^2\right)+\left(x^3-6y^3\right)\\ =x^3-8y^3+x^3-6y^3\\ =2x^3-14y^3\)