Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3a-1\right)^2=9a^2-6a+1\)
\(\left(a-2\right)^2=a^2-4a+4\)
\(\left(1-5a\right)^2=1-10a+25a^2\)
\(\left(3a-2b\right)^2=9a^2-12ab+4a^2\)
\(\left(4-3a\right)^2=16-24a+9a^2\)
\(\left(5a-4b\right)^2=25a^2-40ab+16b^2\)
\(\left(5a-3b\right)\left(5a+3b\right)=25a^2-9b^2\)
\(\left(3x+1\right)\left(3x-1\right)=9x^2-1\)
\(\left(5x^2-2\right)\left(5x^2+2\right)=25x^4-4\)
\(\left(2a+\dfrac{1}{2}\right)\left(2a-\dfrac{1}{2}\right)=4a^2-\dfrac{1}{4}\)
\(\left(3x^2-y\right)\left(3x^2+y\right)=9x^4-y^2\)
\(\left(\dfrac{1}{2}x-1\right)\left(\dfrac{1}{2}x+1\right)=\dfrac{1}{4}x^2-1\)
\(\left(\dfrac{3}{4}x+2\right)\left(\dfrac{3}{4}x-2\right)=\dfrac{9}{16}x^2-4\)
\(\left(5x-\dfrac{3}{2}\right)\left(5x+\dfrac{3}{2}\right)=25x^2-\dfrac{9}{4}\)
\(\left(2a^2-7\right)\left(2a^2+7\right)=4a^2-49\)
a) Ta có: \(-3x^2\left(2x^2-\frac{1}{3}x+2\right)\)
\(=-6x^4+x^3-6x^2\)
b) Ta có: \(2xy^2\left(x-3y+xy\right)\)
\(=2x^2y^2-6xy^3+2x^2y^3\)
c) Ta có: \(\left(5x^2-4x\right)\left(x-2\right)\)
\(=5x^3-10x^2-4x^2+8x\)
\(=5x^3-14x^2+8x\)
d) Ta có: \(-\left(2-x\right)\left(2x+3\right)\)
\(=\left(x-2\right)\left(2x+3\right)\)
\(=2x^2+3x-4x-6\)
\(=2x^2-x-6\)
e) Ta có: \(\left(3x^3-2x^2+x\right):\left(-2x\right)\)
\(=\frac{-3}{2}x^2+x-\frac{1}{2}\)
f) Ta có: \(\left(15x^2y^2-21x^3y+2x^2y\right):\left(3x^2y\right)\)
\(=5y-7x+\frac{2}{3}\)
g)
Tìm x:
1. 3x (2x + 3) - (2x + 5).(3x - 2) = 8
\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=0 \)
\(\Leftrightarrow-2x+10=0\Leftrightarrow x=5\)
Vậy x = 5
2. 4x (x -1) - 3(x2 - 5) -x2 = (x - 3) - (x + 4)
\(\Leftrightarrow4x^2-4x-3x^2+15-x^2=x-3-x-4\)
\(\Leftrightarrow-4x+15=-7\)
\(\Leftrightarrow-4x=-22\Leftrightarrow x=\frac{11}{2}\)
Vậy x = \(\frac{11}{2}\)
3. 2 (3x -1) (2x +5) - 6 (2x - 1) (x + 2) = -6
\(\Leftrightarrow2\left(6x^2+15x-2x-5\right)-6\left(2x^2+4x-x-2\right)=-6\)
\(\Leftrightarrow12x^2+30x-4x-10-12x^2-24x+6x+12=-6\)
\(\Leftrightarrow8x=-8\Leftrightarrow x=-1\)
Vậy x = -1
4. 3 ( 2x - 1) (3x - 1) - (2x - 3) (9x - 1) - 3 = -3
\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-18x^2+2x+27x-3-3=-3\)
\(\Leftrightarrow18x^2-6x-9x+3-18x^2+2x+27x-6=-3\)
\(\Leftrightarrow14x=0\Leftrightarrow x=0\)
Vậy x = 0
5. (3x - 1) (2x + 7) - ( x + 1) (6x - 5) = (x + 2) - (x - 5)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=7\)
\(\Leftrightarrow18x=9\Leftrightarrow x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
6. 3xy (x + y) - (x + y) (x2 + y2 + 2xy) + y3 = 27
\(\Leftrightarrow3x^2y+3xy^2-\left(x+y\right)^3+y^3=27\)
\(\Leftrightarrow3x^2y+3xy^2-x^3-y^3-3x^2y-3xy^2+y^3=27\)
\(\Leftrightarrow-x^3=27\)
\(\Leftrightarrow x=-3\)
Vậy x = -3
7. 3x (8x - 4) - 6x (4x - 3) = 30
\(\Leftrightarrow24x^2-12x-24x^2+12x=30\)
\(\Leftrightarrow0=30\) ( vô lý)
Vậy pt vô nghiệm
8. 3x (5 - 2x) + 2x (3x - 5) = 20
\(\Leftrightarrow15x-6x^2+6x^2-10x=20\)
\(\Leftrightarrow5x=20\Leftrightarrow x=4\)
Vậy x = 4
1,4x2.(5x3+2x-1)
=4x2.5x3+4x2.2x-4x2.1
20x5+8x3-4x2
2,4x3y2:x2
=4xy2
3,(15x2y3-10x3y3+6xy):5xy
15x2y3:5xy-10x3y3:5xy+6xy:5xy
3xy2-2x2y2+\(\dfrac{6}{5}\)
1: \(=20x^5+8x^3-4x^2\)
2: \(=4xy^2\)
3: \(=3xy^2-2x^2y^2+\dfrac{6}{5}\)
4: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
5: \(=\dfrac{7}{2x}+\dfrac{11}{3y^2}=\dfrac{21y^2+22x}{6xy^2}\)
6: \(=\dfrac{4x^2-7x+3}{\left(4x-7\right)\left(x+2\right)}\)
7: \(=\dfrac{3x+3y-2x^3+2x^2y}{\left(x-y\right)\left(x+y\right)}\)
8: \(=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)=2x^4y^2-\dfrac{1}{2}x^2y^4\)
9: \(=\left(x-\dfrac{1}{4}\right)\left(4x-1\right)=4\left(x-\dfrac{1}{4}\right)^2=4\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)
\(=4x^2-2x+\dfrac{1}{4}\)
10: \(=\dfrac{3x^2+6-x}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
11: \(=\dfrac{x+1}{2}-\dfrac{3}{x-1}\)
\(=\dfrac{x^2-7}{2\left(x-1\right)}\)
12: \(=\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{x}{x+y}\)
15:=x^3-y^3+2
1: \(=20x^5+8x^3-4x^2\)
2: \(=4xy^2\)
3: \(=3xy^2-2x^2y^2+\dfrac{6}{5}\)
4: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
5: \(=\dfrac{7}{2x}+\dfrac{11}{3y^2}=\dfrac{21y^2+22x}{6xy^2}\)
6: \(=\dfrac{4x^2-7x+3}{\left(4x-7\right)\left(x+2\right)}\)
7: \(=\dfrac{3x+3y-2x^3+2x^2y}{\left(x-y\right)\left(x+y\right)}\)
8: \(=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)=2x^4y^2-\dfrac{1}{2}x^2y^4\)
9: \(=\left(x-\dfrac{1}{4}\right)\left(4x-1\right)=4\left(x-\dfrac{1}{4}\right)^2=4\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)
\(=4x^2-2x+\dfrac{1}{4}\)
10: \(=\dfrac{3x^2+6-x}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
11: \(=\dfrac{x+1}{2}-\dfrac{3}{x-1}\)
\(=\dfrac{x^2-7}{2\left(x-1\right)}\)
12: \(=\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{x}{x+y}\)
15:=x^3-y^3+2
1) 4x\(^2\).(5x3+2x-1)
= 20x\(^5\)+8x\(^3\)-4x\(^2\).
2) 4x\(^3\): x2
= 4x
3) ( 15x2y3-10x3y3+6xy): 5xy
= 3xy2-2x2y2+\(\dfrac{6}{5}\)
4) (5x3+14x2+12x+8 ): (x+2)
= 5x2+4x+4
5)\(\dfrac{7}{2x}\)+\(\dfrac{11}{3y^2}\)
=\(\dfrac{7.3y^2+11.2x}{6xy^2}\) =\(\dfrac{21y^2+22x}{6xy^2}\) = \(\dfrac{21+22}{6}\) =\(\dfrac{43}{6}\)
6) \(\dfrac{x}{x+2}\) +\(\dfrac{3}{\left(x+2\right)\left(4x-7\right)}\)
7)\(\dfrac{3}{x-y}\)-\(\dfrac{2x^2}{x+y}\)
= \(\dfrac{3\left(x+y\right)-2\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{3x+3y-2x-2y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{1}{x-y}\).
8)\(\dfrac{1}{2}\)x2y2.(2x+y)(2x-y)
= \(\dfrac{1}{2}\)x2y2.(4x2-2xy+2xy-y2)
= \(\dfrac{1}{2}\)x2y2.(4x2-y2)
= 2x4y2-\(\dfrac{1}{2}\)x2y4
9) (x-\(\dfrac{1}{2}\)).(x+\(\dfrac{1}{2}\)).(4x-1)
= x2.(4x-1)
= 4x3-x2
10)\(\dfrac{3x}{2x+6}\)+\(\dfrac{6-x}{2x^2+6x}\)
= \(\dfrac{3x}{2\left(x+3\right)}\)+\(\dfrac{6-x}{2x\left(x+3\right)}\)= \(\dfrac{3x^2+6-x}{2x\left(x+3\right)}\)=\(\dfrac{3-x}{3}\)= -x
11) x2-\(\dfrac{1}{2x-2}\)+3x+\(\dfrac{3}{1-x^2}\)
12)\(\dfrac{x^2}{x^2-y^2}\)-\(\dfrac{x-y}{x^2-y^2}\)
= \(\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)= \(\dfrac{x}{x+y}\)
1, \(A=3x^2+5x-1\)
\(=3\left(x^2+\dfrac{5}{3}x-\dfrac{1}{3}\right)\)
\(=3\left(x^2+\dfrac{5}{6}.x.2+\dfrac{25}{36}-\dfrac{37}{36}\right)\)
\(=3\left(x+\dfrac{5}{6}\right)^2-\dfrac{37}{12}\ge\dfrac{-37}{12}\)
Dấu " = " khi \(3\left(x+\dfrac{5}{6}\right)^2=0\Leftrightarrow x=\dfrac{-5}{6}\)
Vậy \(MIN_A=\dfrac{-37}{12}\) khi \(x=\dfrac{-5}{6}\)
2,3 tương tự
4, \(A=2x^2+7x\)
\(=2\left(x^2+\dfrac{7}{4}.x.2+\dfrac{49}{16}-\dfrac{49}{16}\right)\)
\(=2\left(x+\dfrac{7}{4}\right)^2-\dfrac{49}{8}\ge\dfrac{-49}{8}\)
Dấu " = " khi \(2\left(x+\dfrac{7}{4}\right)^2=0\Leftrightarrow x=\dfrac{-7}{4}\)
Vậy \(MIN_A=\dfrac{-49}{8}\) khi \(x=\dfrac{-7}{4}\)
5, 6 tương tự
7, \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
Dấu " = " khi \(\left(x^2+5x\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(MIN_A=-36\) khi x = 0 hoặc x = -5
8, \(A=x^2-4x+y^2-8x+6\)
\(=x^2-4x+4+y^2-8x+16-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Vậy \(MIN_A=-14\) khi x = 2 và y = 4
` @Answer`
`2,(7+3x-y)(7-3x+y)`
`=(7+3x)^2 - y^2`
`3, (6/5 - 5x)^2`
`=(6/5)^2 - 2 . 6/5 . 5x+ (5x)^2`
`= 36/25 - 12x + 25x^2`
Công thức :
`(x-y)(x+y) = x^2 - y^2`
`(x+y)^2=x^2+2xy+y^2`
`+,` Đề `1:(2x+y^2)` ngoài ngoặc có gì ạ ?
2)
(7 + 3x - y)(7 - 3x + y)
= [7 + (3x - y)][7 - (3x + y)]
= 7² - (3x - y)²
= 49 - (3x - y)²
= 49 - (9x² - 6xy + y²)
= 49 - 9x² + 6xy - y²