Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
\(=\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3}+1}-1\right)}{\left(\sqrt{\sqrt{3}+1}-1\right)\left(\sqrt{\sqrt{3}+1}+1\right)}\)
\(=\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\sqrt{3}+1-1}\)
\(=\frac{\sqrt{3}.2}{\sqrt{3}}\)
\(=2\)
\(\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
\(=\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}+1\right)}{\left(\sqrt{\sqrt{3}+1}-1\right)\left(\sqrt{1+\sqrt{3}}+1\right)}-\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}-1\right)}{\left(\sqrt{\sqrt{3}+1}+1\right)\left(\sqrt{1+\sqrt{3}}+1\right)}\)
\(=\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}+1\right)-\sqrt{3}.\left(\sqrt{1+\sqrt{3}}-1\right)}{\left(\sqrt{1+\sqrt{3}}-1\right)\left(\sqrt{1+\sqrt{3}}+1\right)}\)
\(=\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}+1\right)-\sqrt{3}.\left(\sqrt{1+\sqrt{3}}-1\right)}{\sqrt{3}}\)
\(=\frac{2\sqrt{3}}{\sqrt{3}}\)
= 2
Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Leftrightarrow A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(\Leftrightarrow A^2=8+2\sqrt{16-10-2\sqrt{5}}\\ \Leftrightarrow A^2=8+2\sqrt{6-2\sqrt{5}}\\ \Leftrightarrow A^2=8+2\left(\sqrt{5}-1\right)\\ \Leftrightarrow A^2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\\ \Leftrightarrow A=\sqrt{5}+1\)
Vậy \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=\sqrt{5}+1\)
#)Giải :
Bình phương hai vế, ta được :
\(B^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\sqrt{\left(16-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\left(\sqrt{5}-1\right)\)
Do \(B>0\)nên \(B=\sqrt{8+2\left(\sqrt{5}-1\right)}=\sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)
#~Will~be~Pens~#
Bình phương hai vế, ta được:
B2=8+2√(4+√10+2√5)(4−√10+2√5)=8+2√(16−(10+2√5))B2=8+2(4+10+25)(4−10+25)=8+2(16−(10+25))
B2=8+2√6−2√5=8+2√(√5−1)2=8+2(√5−1)B2=8+26−25=8+2(5−1)2=8+2(5−1)
Do B>0B>0 nên B=√8+2(√5−1)=√6+2√5=√5+1B=8+2(5−1)=6+25=5+1
Tk mk nha
~ Hok tốt ~
Thanks m.n đã tk mk
Bạn tham khảo lời giải tại đây:
Câu hỏi của khanhhuyen6a5 - Toán lớp 9 | Học trực tuyến
Đặt biểu thức trên là \(A\)
Ta có \(A^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{5-2\sqrt{5}+1}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)
\(\Rightarrow A=\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)
cho hỏi sao ra được kết quả như vậy giải thích dùm đi
Đặt cái đấy là A
A2 = 8 + \(2\sqrt{6-2\sqrt{5}}\)
= 8 + \(2\sqrt{5}-2\)
= 6 + 2\(\sqrt{5}\)= (\(1+\sqrt{5}\))2
=> A = \(1+\sqrt{5}\)
=\(\frac{2^2.\left(\sqrt{10}\right)^2-\left(5\right)^2}{4^2-\left(\sqrt{10}\right)^2}\)
=\(\frac{40-25}{16-10}\)=\(\frac{15}{6}\)=\(\frac{5}{2}\)