Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x^3y-0,5x^2\right)^3\)
\(=\left(2x^3y\right)^3-3\left(2x^3y\right)^20,5x^2+3.2x^3y\left(0,5x^2\right)^2-\left(0,5x^2\right)^3\)
\(=8x^9y^3-6x^8y^2+1,5x^7y-0,125x^6\)
b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)
\(=x^3-3^3\)
\(=x^3-27.\)
a,\(\left(2x^3y-0,5x^2\right)^3=\left(2x^3y\right)^3-3.\left(2x^3y\right)^2.\left(0,5x^2\right)+3.\left(0,5x^2\right)^2.\left(2x^3y\right)-\left(0,5x^2\right)^3\)
\(=8x^9y^3-6x^8y^2+\frac{3}{2}x^7y-\frac{1}{8}x^6\)
b,\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3=x^3-27y^3\)
\(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+3.x^2+3^2\right]\)
\(=\left(x^2\right)^3-3^3=x^6-27\)
a, (x+y+z)2
=\(x^2+y^2+z^2+2xy+2xz+2yz\)
b, (x+y−z)2
=\(x^2+y^2+z^2+2xy-2xz-2yz\)
c, (x−y−z)2
=\(x^2+y^2+z^2-2xy-2xz+2yz\)
chúc bạn học tốt ạ
a) Ta có: \(\left(x+y+z\right)^2=\left[\left(x+y\right)+z\right]^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)
\(=x^2+2xy+y^2+2xz+2yz+z^2\)
\(=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
b) Ta có: \(\left(x+y-z\right)^2=\left[\left(x+y\right)-z\right]^2\)
\(=\left(x+y\right)^2-2\left(x+y\right)z+z^2\)
\(=x^2+2xy+y^2-2xz-2yz+z^2\)
\(=x^2+y^2+z^2+2\left(xy-yz-zx\right)\)
c) Ta có: \(\left(x-y-z\right)^2=\left[\left(x-y\right)-z\right]^2\)
\(=\left(x-y\right)^2-2\left(x-y\right)z+z^2\)
\(=x^2-2xy+y^2-2xz-2yz+z^2\)
\(=x^2+y^2+z^2-2\left(xy+yz+zx\right)\)
a) Ta có: \(\left(x-3\right)^3\)
\(=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)
\(=x^3-9x^2+27x^2-27\)
b) Ta có: \(\left(2x-3\right)^3\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2-3^3\)
\(=8x^3-36x^2+54x-27\)
c) Ta có: \(\left(x-\frac{1}{2}\right)^3\)
\(=x^3-3\cdot x^2\cdot\frac{1}{2}+3\cdot x\cdot\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3\)
\(=x^3-\frac{3}{2}x^2+\frac{3}{4}x-\frac{1}{8}\)
d) Ta có: \(\left(x^2-2\right)^3\)
\(=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2-2^3\)
\(=x^6-6x^4+12x^2-8\)
e) Ta có: \(\left(2x-3y\right)^3\)
\(=\left(2x\right)^3-2\cdot\left(2x\right)^2\cdot3y+2\cdot2x\cdot\left(3y\right)^2-\left(3y\right)^3\)
\(=8x^3-24x^2y+36xy^2-27y^3\)
f) Ta có: \(\left(\frac{1}{2}x-y^2\right)^3\)
\(=\left(\frac{1}{2}x\right)^3-3\cdot\left(\frac{1}{2}x\right)^2\cdot y^2+3\cdot\frac{1}{2}x\cdot\left(y^2\right)^2-\left(y^2\right)^3\)
\(=\frac{1}{8}x^3-\frac{3}{4}x^2y^2+\frac{3}{2}xy^4-y^6\)
a) \(\left(2x^2-1\right)^2\)
\(=4x^4-4x^2+1\)
b)\(\left(\dfrac{1}{2}x+3y^2\right)^2\)
\(=\dfrac{1}{4}x^2+3xy^2+9y^4\)
a) Ta có: \(\left(x+1\right)^3\)
\(=x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3\)
\(=x^3+3x^2+3x+1\)
b) Ta có: \(\left(2x+3\right)^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)
\(=8x^3+3\cdot4x^2\cdot3+27\cdot2x+27\)
\(=8x^3+36x^2+54x+27\)
c) Ta có: \(\left(x+\frac{1}{2}\right)^3\)
\(=x^3+2\cdot x^2\cdot\frac{1}{2}+2\cdot x\cdot\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3\)
\(=x^3+x^2+\frac{1}{2}x+\frac{1}{8}\)
d) Ta có: \(\left(x^2+2\right)^3\)
\(=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2+2^3\)
\(=x^6+6x^4+12x^2+8\)
e) Ta có: \(\left(2x+3y\right)^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3y+3\cdot2x\cdot\left(3y\right)^2+\left(3y\right)^3\)
\(=8x^3+36x^2y+54xy^2+27y^3\)
f) Ta có: \(\left(\frac{1}{2}x+y^2\right)^3\)
\(=\left(\frac{1}{2}x\right)^3+3\cdot\left(\frac{1}{2}x\right)^2\cdot y^2+3\cdot\frac{1}{2}x\cdot\left(y^2\right)^2+\left(y^2\right)^3\)
\(=\frac{1}{8}x^3+\frac{3}{4}x^2y^2+\frac{3}{2}xy^4+y^6\)
\(\left(a+b-c\right)^2=\left(\left(a+b\right)-c\right)^2\)
\(=\left(a+b\right)^2+c^2-2\left(a+b\right)c\)
\(=a^2+b^2+2ab+c^2-2ac-2bc\)
\(=a^2+b^2+c^2+2ab-2bc-2ca\)
\(\left(a-b+c\right)^2=\left(\left(a-b\right)+c\right)^2\)
\(=\left(a-b\right)^2+c^2+2\left(a-b\right)c\)
\(=a^2+b^2-2ab+c^2+2ac-2bc\)
\(=a^2+b^2+c^2-2ab-2bc+2ca\)
\(\left(x-y+z\right)\left(x-y-z\right)=\left(\left(x-y\right)+z\right)\left(\left(x-y\right)-z\right)\)
\(=\left(x-y\right)^2-z^2\)
\(=x^2+y^2-2xy-z^2\)
( a + b - c )2 = [ ( a + b ) - c ]2
= ( a + b )2 - 2( a + b )c + c2
= a2 + b2 + c2 + 2ab - 2bc - 2ac
( a - b + c )2 = [ ( a- b ) + c ]2
= ( a - b )2 + 2( a - b )c + c2
= a2 + b2 + c2 - 2ab - 2bc + 2ca
( x - y + z )( x - y - z ) = [ ( x - y ) + z ][ ( x - y ) - z ]
= ( x - y )2 - z2
= x2 + y2 - z2 - 2xy
a ) \(\left(x+y\right)^5=x^5+5x^4y+10x^3y^2+5xy^4+y^5\)
b ) \(\left(x-3y\right)^6=\left[x+\left(-3y\right)\right]^6\)
\(=x^6+6x^5\left(-3y\right)+15x^4\left(-3y\right)^2+20x^3\left(-3y\right)^3+15x^2\left(-3y\right)^4+6x\left(-3y\right)^5+\left(-3y\right)^6\)
\(=x^6-18x^5y+135x^4y^2-540x^3y^3+1215x^2y^4-1458xy^5+729y^6\)
Chúc bạn học tốt
a)
b)