\(\sqrt{13+4\sqrt{3}}\)

GIÚP MK NHÉ M.N!

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

\(=\sqrt{9+4\sqrt{3}+4}\)

= \(\sqrt{\left(\sqrt{3}+2\right)^2}\)

=\(\sqrt{3}+2\)

10 tháng 8 2017

\(\sqrt{9+4+4\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(=\sqrt{3}+2\)

Áp dụng quy tắc khai phương một tích

1: Ta có: \(\sqrt{\frac{1}{5}}\cdot\sqrt{\frac{1}{20}}\cdot3\cdot7\)

\(=\sqrt{\frac{1}{5}}\cdot\sqrt{\frac{1}{20}}\cdot\sqrt{9}\cdot\sqrt{49}\)

\(=\sqrt{\frac{1}{5}\cdot\frac{1}{20}\cdot9\cdot49}\)

\(=\sqrt{\frac{441}{100}}=\frac{\sqrt{441}}{\sqrt{100}}=\frac{21}{10}\)

2: Ta có: \(\sqrt{0,001\cdot360\cdot3^2\cdot\left(-3\right)^2}\)

\(=\sqrt{0,001}\cdot\sqrt{360}\cdot\sqrt{3^{^2}}\cdot\sqrt{\left(-3\right)^2}\)

\(=\sqrt{\frac{1}{100}}\cdot\sqrt{\frac{1}{10}}\cdot\sqrt{6^2}\cdot\sqrt{10}\cdot3\cdot3\)

\(=\frac{1}{10}\cdot6\cdot9\cdot\sqrt{\frac{1}{10}\cdot10}=\frac{54}{10}\cdot1=\frac{27}{5}\)

Áp dụng quy tắc nhân căn thức bậc hai

1: Ta có: \(2\sqrt{2}\left(4\sqrt{8}-\sqrt{32}\right)\)

\(=2\sqrt{2}\cdot4\sqrt{8}-2\sqrt{2}\cdot\sqrt{32}\)

\(=8\cdot\sqrt{16}-2\cdot\sqrt{64}\)

\(=8\cdot4-2\cdot8\)

=32-16=16

NV
16 tháng 6 2019

\(\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{\left(2\sqrt{2}-1\right)^2}}{2}=\frac{2\sqrt{2}-1}{2}\)

\(\sqrt{\frac{129+16\sqrt{2}}{16}}=\sqrt{\frac{\left(8\sqrt{2}+1\right)^2}{16}}=\frac{8\sqrt{2}+1}{4}\)

\(\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

\(\sqrt{\frac{289+4\sqrt{72}}{16}}=\frac{\sqrt{\left(12\sqrt{2}+1\right)^2}}{4}=\frac{12\sqrt{2}+1}{4}\)

\(\sqrt{8+2\sqrt{15}}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)

7 tháng 8 2018

\(a,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\left(\sqrt{20}-3\right)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)

\(=\sqrt{1}=1\)

b,c

\(\sqrt{13+4\sqrt{3}}=\sqrt{13+2\sqrt{12}}=\sqrt{12}+1=2\sqrt{3}+1\)

=>BT=\(\sqrt{5-\left(2\sqrt{3}+1\right)}+\sqrt{3+\left(2\sqrt{3}+1\right)}\)

\(=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)

c,\(=\sqrt{1+\sqrt{3+2\sqrt{3}+1}}+\sqrt{1-\sqrt{3-\left(2\sqrt{3}-1\right)}}\)

\(=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

15 tháng 6 2017

a) \(\sqrt{4\left(1+6x+9x^2\right)^2}\) = \(\sqrt{\left(2\left(1+6x+9x^2\right)\right)^2}\)

= \(\sqrt{\left(2\left(1-6\sqrt{2}+18\right)\right)^2}\) = \(2\left(1-6\sqrt{2}+18\right)\) = \(2\left(3\sqrt{2}-1\right)^2\)

= \(21,029\)

b) \(\sqrt{9a^2\left(b^2+4-4b\right)}\) = \(\sqrt{\left(3a\left(b-2\right)\right)^2}\) = \(\sqrt{\left(-6\left(-\sqrt{3}-2\right)\right)^2}\)

= \(\sqrt{\left(6\sqrt{3}+12\right)^2}\) = \(6\sqrt{3}+12\) = \(22,392\)