K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 6 2020

\(A=\frac{1}{2}+\frac{1}{2}cos2x+\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)

\(=\frac{3}{2}+\frac{1}{2}cos2x+cos2x.cos\frac{4\pi}{3}\)

\(=\frac{3}{2}+\frac{1}{2}cos2x-\frac{1}{2}cos2x=\frac{3}{2}\)

\(B=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}-\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)

\(=\frac{3}{2}-\frac{1}{2}cos2x-cos2x.cos\frac{4\pi}{3}\)

\(=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x=\frac{3}{2}\)

NV
27 tháng 4 2020

\(A=\frac{2tan15^0}{1-tan^215^0}=tan\left(2.15^0\right)=tan30^0=\frac{\sqrt{3}}{3}\)

\(B=\frac{1}{2}.2sin\frac{\pi}{16}.cos\frac{\pi}{16}.cos\frac{\pi}{8}=\frac{1}{2}.sin\left(2.\frac{\pi}{16}\right)cos\frac{\pi}{8}\)

\(=\frac{1}{4}.2sin\frac{\pi}{8}cos\frac{\pi}{8}=\frac{1}{4}sin\left(2.\frac{\pi}{8}\right)=\frac{1}{4}sin\frac{\pi}{4}=\frac{\sqrt{2}}{8}\)

NV
3 tháng 6 2020

\(sinx+cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

\(=\sqrt{2}cos\left(\frac{\pi}{2}-\left(x+\frac{\pi}{4}\right)\right)=\sqrt{2}cos\left(\frac{\pi}{4}-x\right)=\sqrt{2}cos\left(x-\frac{\pi}{4}\right)\)

\(sinx-cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx-\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)

\(=-\sqrt{2}sin\left(\frac{\pi}{4}-x\right)=-\sqrt{2}cos\left(\frac{\pi}{2}-\left(\frac{\pi}{4}-x\right)\right)=-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

\(sin^4x-cos^4x=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x\)

\(=sin^2x-cos^2x+sin2x=sin2x-cos2x\)

\(=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)\)

Bạn ghi ko đúng đề

3 tháng 6 2020

cos4x - sin4x + sin2x

20 tháng 6 2020

a, \(\frac{sin2a+cosa}{2sina+1}=\frac{2sinacosa+cóa}{2sina+1}\)= \(\frac{cosa\left(2sina+1\right)}{2sina+1}\)= cos a (đpcm)

b, P= \(\frac{\left(sin^2x-cos^2x\right)\left(sin^2+cos^2x\right).\left(sin^2+2sinx.cosx+cos^2x-1\right)}{1+2cos2x-1}\)

= \(\frac{\left(sin^2x-cos^2x\right).2sinx.cosx}{2cos2x}\)

= \(\frac{-cos2x.sin2x}{2.cos2x}\)= -1/2 sin 2x

#mã mã#

27 tháng 5 2021

`A=sin(π-α)+cos(π+α)+cos(-α)`

`= sinα-cosα+cosα=sinα=3/5`

NV
2 tháng 6 2020

\(A=cos^2a+cos^2b+2cosa.cosb+sin^2a+sin^2b+2sina.sinb\)

\(=cos^2a+sin^2a+cos^2b+sin^2b+2\left(cosa.cosb+sina.sinb\right)\)

\(=2+2cos\left(a-b\right)=2+2cos\frac{\pi}{3}=3\)

\(\left(cosa+sina\right)^2=\frac{36}{25}\Leftrightarrow1+2sina.cosa=\frac{36}{25}\)

\(\Rightarrow sin2a=\frac{36}{25}-1=\frac{11}{25}\)

\(cos2a=cos^2a-sin^2a=\left(cosa-sina\right)\left(cosa+sina\right)>0\)

\(\Rightarrow cos2a=\sqrt{1-sin^22a}=\frac{6\sqrt{14}}{25}\)