Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu \(x^4+ax+b\vdots x^2-4\) thì ta có thể viết $x^4+ax+b$ dưới dạng:
\(x^4+ax+b=(x^2-4)Q(x)\) (trong đó \(Q(x)\) là đa thức dư)
Thay \(x=2\Rightarrow 16+2a+b=0(1)\)
Thay \(x=-2\Rightarrow 16-2a+b=0(2)\)
Từ \((1),(2)\Rightarrow \left\{\begin{matrix} a=0\\ b=-16\end{matrix}\right.\)
Do đó, \(a-\frac{3}{2}b=24\)
lần sau bn gửi thêm thông tin vòng mấy hộ mik nhé, mik muốn biết câu hỏi ở vòng nào
Câu 6:
\(\left(x^2-4\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow x^4-14x^2+40-72=0\)
\(\Leftrightarrow x^4-14x^2-32=0\)
\(\Leftrightarrow x^4-16x^2+2x^2-32=0\)
\(\Leftrightarrow\left(x^2-16\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow x^2-16=0\)
=>x=4 hoặc x=-4
=>Tổng các nghiệm là 0
Câu 5:
\(\dfrac{x}{2}+\dfrac{y}{3}=7\)
\(\Leftrightarrow\dfrac{3x}{6}+\dfrac{2y}{6}=7\)
\(\Leftrightarrow3x+2y=42\)
Câu 4:
Để C chia hết cho D thì \(x^4+a⋮x^2+4\)
\(\Leftrightarrow x^4-16+a+16⋮x^2+4\)
=>a+16=0
hay a=-16
\({x^4} + ax + b\) chia hết cho \({x^2} - 4\)
=> \({x^2} - 4\) là nghiệm của phương trình.
=> \(x^2 = 4\)
=> \(x=\left\{{}\begin{matrix}-2\\2\end{matrix}\right.\)
Thay x = -2 và x = -2 vào phương trình ta được hệ phương trình sau:
\(\left\{{}\begin{matrix}2a+b=-16\\-2a+b=-16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=0\\a=-16\end{matrix}\right.\)
\(=> a - \dfrac{3}{2}b = 0 - \dfrac{3}{2}.( - 16) = 24\)
Nguồn: maytinhbotui.vn
Do \(a^4+a.x+b\)
chia hết cho x^2 - 4
Mà x^2 - 4 = (x-2)(x+2)
=> \(f\left(x\right)=a^4+a.x+b\)
chia hết cho x - 2 và x+2
Áp dụng định lí Bezout
=>\(f\left(2\right)=a^4+2a+b=0\)
và \(f\left(-2\right)=a^4-2a+b=0\)
=>\(a^4+b=2a=-2a\)
=> a=0
=>b=0
=> a-3/2b = 0