Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tam giác ABC cân tại A, M, N lần lượt là trung điểm AB, AC. I, K lần lượt là hình chiếu M, N trên BC. Khẳng định sai là:
A.
Tứ giác MNCB là hình thang cân
B.
Tứ giác MNKI là hình chữ nhật
C.
Tứ giác AMIC là hình thang vuông
D.
Tứ giác MNCI là hình thang vuông
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi hình thang đó là \(ABCD\)có \(AB\)là đáy nhỏ, \(CD\)là đáy lớn.
Khi đó \(AB=AD=BC=1\left(cm\right),AD\perp AC\).
Hạ đường cao \(AH,BK\).
Dễ thấy \(DH=CK\).
Đặt \(DH=CK=x\left(cm\right)\).
Xét tam giác \(ADC\)vuông tại \(A\)đường cao \(AH\):
\(AD^2=DH.DC\)
\(\Leftrightarrow1=x\left(2x+1\right)\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(CD=2x+1=2\left(cm\right)\)
\(AC=\sqrt{CD^2-AD^2}=\sqrt{2^2-1}=\sqrt{3}\left(cm\right)\)