Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ghép 2 chữ số đối xứng sát nhau là được 1 hình như kết quả.
a) \(ĐKXĐ:x\ge1\)
\(\sqrt{x-1}=3\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=3^2\)
\(\Leftrightarrow x-1=9\)
\(\Leftrightarrow x=10\)
Vậy nghiệm duy nhất của pt là 10.
b)\(ĐKXĐ:x\ge3\)
\(\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow x-3=1\)
\(\Leftrightarrow x=4\)
Vậy nghiệm duy nhất của pt là 4
\(a,\sqrt{x-1}=3\)\(\text{ĐKXĐ: }x\ge1\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=3^2\)
\(\Leftrightarrow|x-1|=9\)
\(\Leftrightarrow x-1=\pm9\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=9\\x-1=-9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\text{(thỏa mãn ĐKXĐ)}\\x=-8\text{(không thỏa mãn ĐKXĐ)}\end{cases}}\)
Ta có: \(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Rightarrow A^3=\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)^3\)
\(=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)
\(=18+3\sqrt[3]{81-80}\cdot A\)
\(=18+3A\)
\(\Rightarrow A^3-3A-18=0\)
\(\Leftrightarrow\left(A^3-3A^2\right)+\left(3A^2-9A\right)+\left(6A-18\right)=0\)
\(\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)=0\)
Mà \(A^2+3A+6=\left(A+\frac{3}{2}\right)^2+\frac{15}{4}\left(\forall A\right)\)
\(\Rightarrow A=3\)
Vậy A = 3
a)
\(A=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\)
\(=\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}+\frac{4\sqrt{a}-4}{4-\sqrt{a}}\)
\(=\frac{a+2\sqrt{a}+3\sqrt{a}+6-a-2\sqrt{a}-\sqrt{a}+2}{a-4}+\frac{4\sqrt{a}-4}{4-a}\)
\(=\frac{a-a+\left(2+3-2-1\right)\sqrt{a}+6+2}{a-4}+\frac{-4\sqrt{a}+4}{a-4}\)
\(=\frac{2\sqrt{a}+8}{a-4}+\frac{-4\sqrt{a}+4}{a-4}\)
\(=\frac{2\sqrt{a}+8-4\sqrt{a}+4}{\left(a-4\right)^2}\)
\(=\frac{-2\sqrt{a}+12}{\left(a-4\right)^2}\)
b) thấy A = 9 vào biểu thức , ta có :
\(9=\frac{-2\sqrt{a}+12}{\left(a-4\right)^2}\)
\(< =>\frac{9\left(a-4\right)^2}{\left(a-4\right)^2}=\frac{-2\sqrt{a}+12}{\left(a-4\right)^2}\)
\(< =>9\left(a-4\right)^2=-2\sqrt{a}+12\)
\(< =>9.\left(a^2-2a.4+4^2\right)=-2\sqrt{a}+12\)
\(< =>9a^2-72a+144=-2\sqrt{a}+12\)
\(< =>9a^2-72a+2\sqrt{a}=12-144\)
\(< =>\sqrt{a}\left(9\sqrt{a}^3-72\sqrt{a}+2\right)=-132\)
\(\)
TỚI ĐÂY AI BIẾT THÌ GIẢI TIẾP NHA , MÌNH HẾT BIẾT CÁCH LÀM RỒI
\(\sqrt[3]{2-\sqrt{5}}\left(\sqrt[6]{9+4\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}\right)\)
\(=\sqrt[3]{2-\sqrt{5}}\left(\sqrt[6]{\left(2^2+2.2\sqrt{5}+\sqrt{5^2}\right)}+\sqrt[3]{2+\sqrt{5}}\right)\)
\(=\sqrt[3]{2-\sqrt{5}}\left(\sqrt[6]{\left(2+\sqrt{5}\right)^2}+\sqrt[3]{2+\sqrt{5}}\right)\)
\(=2\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{2+\sqrt{5}}=2\sqrt[3]{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}=2\sqrt[3]{4-5}=2\sqrt[3]{-1}=-1.2=-2\)
Ta có công thức tổng quát: \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)(*)
Áp dụng (*), ta được: \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{4}-\sqrt{3}\right)+...+\left(\sqrt{100}-\sqrt{99}\right)=\sqrt{100}-\sqrt{1}=9\left(đpcm\right)\)
Trục căn thức ở mẫu :
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{\sqrt{3}-\sqrt{4}}{\left(\sqrt{3}+\sqrt{4}\right)\left(\sqrt{3}-\sqrt{4}\right)}+...+\frac{\sqrt{99}-\sqrt{100}}{\left(\sqrt{99}+\sqrt{100}\right)\left(\sqrt{99}-\sqrt{100}\right)}\)
\(=\frac{\sqrt{1}-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+\frac{\sqrt{3}-\sqrt{4}}{3-4}+...+\frac{\sqrt{99}-\sqrt{100}}{99-100}\)
\(=\frac{\sqrt{1}-\sqrt{2}}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+\frac{\sqrt{3}-\sqrt{4}}{-1}+...+\frac{\sqrt{99}-\sqrt{100}}{-1}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)
\(=\sqrt{100}-\sqrt{1}\)
\(=10-1=9\)
=> đpcm
a) \(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=2\sqrt{\left(a-3\right)^2}=2.\left|a-3\right|=2\left(a-3\right)=2a-6\) (Vì \(a\ge3\) )
b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=3\sqrt{\left(b-2\right)^2}=3\left|b-2\right|=3\left(2-b\right)\)
\(=6-3b\) (vì b < 2 )
b) \(\sqrt{27.48\left(1-a\right)^2}=\sqrt{27.3.16.\left(1-a\right)^2}=\sqrt{81.16.\left(1-a\right)^2}\)
\(=\sqrt{9^2.4^2.\left(1-a\right)^2}=9.4\sqrt{\left(1-a\right)^2}=36.\left|1-a\right|=36\left(1-a\right)=36-36a\) (vì a > 1)
Chọn đáp án C.
Ta có