Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: a
Câu 2: (đề có sai không vậy bạn ?)
Câu 3: b
Câu 4: a
Bài 1:
\(a,=\left(2021-2022\right)^2=1\\ b,=3y-xy-y^2+3x-3y+xy-y^2=3x-2y^2\)
Bài 2:
\(a,\Leftrightarrow x\left(x-2021\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2021\end{matrix}\right.\\ b,\Leftrightarrow\left(x-3\right)\left(x^2-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\end{matrix}\right.\)
Bài 4:
\(M=\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)+2022\\ M=\left(2x-1\right)^2+\left(y+3\right)^2+2022\ge2022\\ M_{min}=2022\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
mình đánh máy vội nên sai mn đừng trả lời câu này nha !!!!
\(=x^2-x+2022x-2022\\ =x\left(x-1\right)+2022\left(x-1\right)\\ =\left(x+2022\right)\left(x-1\right)\)
c, \(x\)(\(x\) - 2022) + 4.(2022 - \(x\)) = 0
(\(x\) - 2022).(\(x\) - 4) = 0
\(\left[{}\begin{matrix}x-2022=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2022\\x=4\end{matrix}\right.\)
\(1,\left(x+2022\right)\left(x-1\right)=x^2+2021x-2022\left(B\right)\\ 2,\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\left(A\right)\)