Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
\(\widehat{EBF}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{EBF}=90^0\)
Xét (O) có
\(\widehat{EAF}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{EAF}=90^0\)
Xét ΔDEF có
EB là đường cao ứng với cạnh FD
FA là đường cao ứng với cạnh DE
EB cắt FA tại H
Do đó: H là trực tâm của ΔDEF
b: Xét tứ giác DAHB có
\(\widehat{DAH}+\widehat{DBH}=180^0\)
nên DAHB là tứ giác nội tiếp
hay D,A,H,B cùng thuộc 1 đường tròn
c: Ta có: I là tâm của đường tròn ngoại tiếp tứ giác DAHB
Suy ra: IA=IB
hay I nằm trên đường trung trực của AB(1)
Ta có: O là tâm đường tròn ngoại tiếp tứ giác ABFE
Suy ra: OA=OB
hay O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OI là đường trung trực của AB
hay OI\(\perp\)AB
d: Điểm K ở đâu vậy bạn?
Xét tứ giác MAOB có
\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
=>MAOB là tứ giác nội tiếp
=>M,A,O,B cùng thuộc một đường tròn
Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
=>BFEC là tứ giác nội tiếp
=>B,F,E,C cùng thuộc một đường tròn
a: Xét tứ giác OAMB có
\(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)
=>OAMB là tứ giác nội tiếp
=>O,A,M,B cùng thuộc một đường tròn
b: Xét (O) có
MA,MB là tiếp tuyến
Do đó: MA=MB
mà OA=OB
nên OM là đường trung trực của AB
=>OM⊥AB(1)
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó:ΔABD vuông tại B
=>AB⊥BD(2)
Từ (1) và (2) suy ra OM//BD
a: Xét tứ giác AHKC có \(\widehat{AHC}=\widehat{AKC}=90^0\)
nên AHKC là tứ giác nội tiếp
=>A,H,K,C cùng thuộc một đường tròn
(Cái hình tớ vẽ minh họa thôi nhe, cậu vẽ vào bài làm nhớ căn vuông góc các thứ ha)
Có: `OA = OB = R`
`MA=MB` (tính chất 2 tiếp tuyến cắt nhau tại M)
`=>` `OM` là đường trung trực của `AB`
`=>` `OM \bot AB` tại `H` là trung điểm `AB`.