Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: AB//CD
=>góc A+góc D=180 độ
mà góc D=2*góc A
nên góc D=2/3*180=120 độ
góc A=180-120=60 độ
AB//CD
=>góc B+góc C=180 độ
mà góc C-góc B=60 độ
nên góc C=(180+60)/2=120 độ và góc B=120-60=60 độ
a: =>3x-2x=-3+2
=>x=-1
bL =>2u+27=4u+27
=>u=0
c: =>5-x+6=12-8x
=>-x+8x=12-6-5=1
=>7x=1
hay x=1/7
Xét ΔMAQ vuông tại A và ΔNBP vuông tại B có
MQ=NP
góc Q=góc P
=>ΔMAQ=ΔNBP
=>AQ=BP
=>AQ+AB=BP+BA
=>BQ=AP
Cm:Xét tứ tứ giác AEBH có: EM = MH (gt); AM = MB (gt)
\(\widehat{AHB}=90^0\)
=> tứ giác AEBH là hình chữ nhật
=> AE // BH hay AE // BC
b) Xét t/giác ABC cân tại A có AH là đường cao
=> AH cũng là đường trung tuyến
=> BH = HC
Ta có: AEBH là hình chữ nhật => AE = BH
mà BH = HC (cmt)
=> AE = HC
Xét tứ giác ACHE có AE // HC (cmt)
AE = HC (cmt)
=> ACHE là hình bình hành
c) Để hình chữ nhật AHBE là hình vuông
<=> AH = HB
<=> t/giác AHB là t/giác vuông cân
<=> \(\widehat{BAH}=45^0\)
<=> \(\widehat{A}=90^0\) (Do t/giác ABC cân có AH là đường cao => AH là đường trung tuyến)
<=> t/giác ABC vuông cân
Vậy ...
Nguyễn Văn Tiến
Cứ mỗi cách chọn 2 đường thẳng thẳng đứng và 2 đường thẳng nằm ngang cho ta 1 hình chữ nhật, suy ra số hình chữ nhật có được là
C26.C25=150 hình chữ nhật
\(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\left(Pitago\right)\)
\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\left(2\right)\left(Pitago\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AC^2-CH^2=AB^2-BH^2\)
\(\Rightarrow AB^2+CH^2=AC^2+BH^2\)
\(\Rightarrow dpcm\)
Ta có \(AB^2-AC^2=\left(BH^2+AH^2\right)-\left(CH^2+AH^2\right)\) \(=BH^2-CH^2\) \(\Rightarrow AB^2+CH^2=AC^2+BH^2\), đpcm.
(Bài này kết quả vẫn đúng nếu không có điều kiện tam giác ABC vuông tại A.)
3:
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Xét tứ giác BDEC có
DE//BC
góc B=góc C
=>BDEC là hình thang cân
b: góc ABC=góc ACB=(180-góc A)/2
=(180-50)/2=65 độ
=>góc BDE=góc DEC=180-65=115 độ