K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBIP vuông tại I và ΔBDA vuông tại D có

\(\widehat{IBP}\) chung

Do đó: ΔBIP đồng dạng với ΔBDA

=>\(\dfrac{BI}{BD}=\dfrac{BP}{BA}\)

=>\(BI\cdot BA=BD\cdot BP\)

b: ta có: \(\dfrac{BI}{BD}=\dfrac{BP}{BA}\)

=>\(\dfrac{BI}{BP}=\dfrac{BD}{BA}\)

=>\(\dfrac{BP}{BI}=\dfrac{BA}{BD}\)

Xét ΔBPA và ΔBID có

\(\dfrac{BP}{BI}=\dfrac{BA}{BD}\)

\(\widehat{PBA}\) chung

Do đó: ΔBPA đồng dạng với ΔBID

14 tháng 11 2021

Xét △ABC có : E là trung điểm AC (gt)

                         F là trung điểm BC (gt)

=> EF là đường trung bình của △ABC

=> EF // AB mà D ∈ AB

=> EF // AD

Xét △ABC có : D là trung điểm AB (gt)

                         F là trung điểm BC (gt)

=> DF là đường trung bình của △ABC

=> DF // AC mà E ∈ AC

=> DF // AE

Xét tứ giác ADFE có : EF // AD (cmt)

                                   DF // AE (cmt)

=> Tứ giác ADFE là hình bình hành (DHNB)

10 tháng 1 2022

Xét △ABC có : E là trung điểm AC (gt)

                         F là trung điểm BC (gt)

=> EF là đường trung bình của △ABC

=> EF // AB mà D ∈ AB

=> EF // AD

Xét △ABC có : D là trung điểm AB (gt)

                         F là trung điểm BC (gt)

=> DF là đường trung bình của △ABC

=> DF // AC mà E ∈ AC

=> DF // AE

Xét tứ giác ADFE có : EF // AD (cmt)

                                   DF // AE (cmt)

=> Tứ giác ADFE là hình bình hành (DHNB)

b) Xét ΔBKC vuông tại K và ΔCHB vuông tại H có 

\(\widehat{KBC}=\widehat{HCB}\)(ΔBAC cân tại A)

Do đó: ΔBKC\(\sim\)ΔCHB(g-g)

a) Áp dụng định lí Pytago vào ΔBKC vuông tại K, ta được:

\(BC^2=BK^2+CK^2\)

\(\Leftrightarrow CK^2=BC^2-BK^2=5^2-3^2=16\)

hay CK=4(cm)

Diện tích tam giác BKC là:

\(S_{BKC}=\dfrac{BK\cdot KC}{2}=\dfrac{3\cdot4}{2}=\dfrac{12}{2}=6\left(cm^2\right)\)

1 tháng 3 2022

gfvfvfvfvfvfvfv555

11 tháng 4 2021

A B C H K

a, Xét tam giác AHB và tam giác AKC ta có 

^AHB = ^AKC = 900

^A _ chung 

Vậy tam giác AHB ~ tam giác AKC ( g.g )

\(\Rightarrow\frac{AH}{AK}=\frac{AB}{AC}\Rightarrow\frac{AC}{AK}=\frac{AB}{AH}\)

b, Xét tam giác AHK và tam giác ABC ta có : 

^A _ chung 

\(\frac{AC}{AK}=\frac{AB}{AH}\)( cmt )

Vậy tam giác AHK ~ tam giác ABC ( c.g.c )

Do 2 tam giác đồng dạng theo trường hợp c.g.c tức là ^AHK = ^ABC 

mà ^ABC = 580 => ^AHK = 58