\(K=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: \(BC=\sqrt{10^2+8^2}=2\sqrt{41}\left(cm\right)\)

\(AH=\dfrac{8\cdot10}{2\sqrt{41}}=\dfrac{40}{\sqrt{41}}\left(cm\right)\)

\(BH=\dfrac{64}{2\sqrt{41}}=\dfrac{32}{\sqrt{41}}\left(cm\right)\)

\(CH=\dfrac{100}{2\sqrt{41}}=\dfrac{50}{\sqrt{41}}\left(cm\right)\)

b: \(\dfrac{AD}{BD}=\dfrac{AH^2}{AB}:\dfrac{BH^2}{AB}=\dfrac{AH^2}{BH^2}\)

a: \(BD\cdot CE\cdot BC\)

\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot\dfrac{AB\cdot AC}{AH}\)

\(=\dfrac{AH^4}{AH}=AH^3\)

b: \(\dfrac{BD}{CE}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}=\dfrac{AB^4}{AB}\cdot\dfrac{AC}{AC^4}=\dfrac{AB^3}{AC^3}\)

 

AH
Akai Haruma
Giáo viên
24 tháng 10 2018

Câu 1:

a)

\(5\sqrt{x}-2=13\Rightarrow 5\sqrt{x}=15\Rightarrow \sqrt{x}=3\)

\(\Rightarrow x=3^2=9\)

b)

\(\sqrt{8x}+7\sqrt{18x}=9-\sqrt{50x}\)

\(\Leftrightarrow \sqrt{4}.\sqrt{2x}+7\sqrt{9}.\sqrt{2x}=9-\sqrt{25}.\sqrt{2x}\)

\(\Leftrightarrow 2\sqrt{2x}+21\sqrt{2x}=9-5\sqrt{2x}\)

\(\Leftrightarrow 28\sqrt{2x}=9\Rightarrow \sqrt{2x}=\frac{9}{28}\)

\(\Rightarrow 2x=(\frac{9}{28})^2\Rightarrow x=\frac{1}{2}.(\frac{9}{28})^2\)

AH
Akai Haruma
Giáo viên
24 tháng 10 2018

Câu 2:

a) \(Q=\frac{2\sqrt{x}-9}{(\sqrt{x}-2)(\sqrt{x}-3)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\frac{2\sqrt{x}-9}{(\sqrt{x}-2)(\sqrt{x}-3)}-\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-2)(\sqrt{x}-3)}+\frac{(2\sqrt{x}+1)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}\)

\(=\frac{2\sqrt{x}-9-(x-9)+(2x-3\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}-3)}\)

\(=\frac{x-\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}-3)}=\frac{(\sqrt{x}+1)(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}-3)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b) Để \(Q=2\Leftrightarrow \frac{\sqrt{x}+1}{\sqrt{x}-3}=2\Rightarrow \sqrt{x}+1=2\sqrt{x}-6\)

\(\sqrt{x}=7\Rightarrow x=49\)

c)

\(Q\in \mathbb{Z}\Leftrightarrow \frac{\sqrt{x}+1}{\sqrt{x}-3}\in \mathbb{Z}\Rightarrow \sqrt{x}+1\vdots \sqrt{x}-3\)

\(\Leftrightarrow \sqrt{x}-3+4\vdots \sqrt{x}-3\)

\(\Leftrightarrow 4\vdots \sqrt{x}-3\Rightarrow \sqrt{x}-3\in \left\{\pm 1; \pm 2; \pm 4\right\}\)

\(\Rightarrow \sqrt{x}\in \left\{2;4;1; 5; 7\right\}\)

\(\Rightarrow \sqrt{x}\in \left\{4; 16; 1; 25; 49\right\}\)

1: Xét ΔABH vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

2: \(AE\cdot AB+AF\cdot AC=AH^2+AH^2=2AH^2\)

4: \(4\cdot OE\cdot OF=2OE\cdot2OF=FE\cdot AH=AH^2\)

\(HB\cdot HC=AH^2\)

Do đó: \(4\cdot OE\cdot OF=HB\cdot HC\)

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)

b: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}\)

\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)

e: \(BE\cdot CF\cdot BC\)

\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot BC\)

\(=\dfrac{AH^4}{AB\cdot AC}\cdot BC=\dfrac{AH^4}{AH\cdot BC}\cdot BC=AH^3\)

\(=EF^3\)