Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(A=\frac{1}{2}.\frac{4949}{9900}\)
\(A=\frac{4949}{19800}\)
So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2
S=
=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50
P=
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50=1
vậy s/p = 1/50
Ax2=1x2/1x2x3+1x2/2x3x4+...+1x2/48x49x50
Ax2=1/1x2-1/2x3+1/2x3-1/3x4+...+1/48x49-1/49x50
Ax2=1/1x2-1/49x50
Ax2=1/2-1/2450
Ax2=1225/2450-1/2450
Ax2=1224/2450
A=1224/2450:2
A=1224/2450X1/2
A=1224/4900
A=306/1225
Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 48.49.50
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + 48.49.50.4
4A = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ... + 48.49.50.(51 - 47)
4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 48.49.50.51 - 47.48.49.50
4A = 48.49.50.51
A = 48.49.50.51 : 4
A = 1499400
1.2.3 + 2.3.4 + 3.4.5 + ... + 48.49.50
Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 48.49.50
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + 48.49.50.4
4A = 1.2.3.4 + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 48.49.50.(51-47)
4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 48.49.50.51 - 47.48.49.50
4A = ( 1.2.3.4 + 2.3.4.5 + 3.4.5.6 + ... + 48.49.50.51 ) - ( 1.2.3.4 - 2.3.4.5 - 47.48.49.50 )
4A = \(\frac{48.49.50.51}{4}\)
A = 1499400
P = 1/49+2/48+3/47+...+48/2+49/1
Cộng 1 váo mỗi p/s trong 48 p/s đầu , trừ p/s cuối đi 48 ta đượ
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50
Đưa ps cuối lên đầu
P=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50.S
VậyS/P=1/50
Lời giải:
$2K=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+....+\frac{50-48}{48.49.50}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{48.49}-\frac{1}{49.50}$
$=\frac{1}{1.2}-\frac{1}{49.50}=\frac{612}{1225}$
$\Rightarrow K=\frac{306}{1225}$