Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)lx^2+lx+1ll=x^2
=>x^2+lx+1l=x^2=>lx+1l=0=>x=-1
3)\(\frac{\left(-\frac{1}{2}\right)^n}{\left(-\frac{1}{2}\right)^{n-2}}=\left(-\frac{1}{2}\right)^{n-n-2}=\left(-\frac{1}{2}\right)^{-2}=4\)
1)\(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}\)
\(\Rightarrow A=\left(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{80}\right)\)
\(\Rightarrow A=C+D\)
Ta có:\(\frac{1}{41}>\frac{1}{60};>\frac{1}{60}:\frac{1}{43}>\frac{1}{60};...;\frac{1}{59}>\frac{1}{60};\frac{1}{60}=\frac{1}{60}\)
\(\Rightarrow C=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)
Ta thấy C có 20 số hạng
\(\Rightarrow C>\frac{1}{60}.20=\frac{1}{3}\)
Ta có:\(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};\frac{1}{63}>\frac{1}{80};...;\frac{1}{79}>\frac{1}{80};\frac{1}{80}=\frac{1}{80}\)
\(\Rightarrow D=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}\)
Ta thấy D có 20 số hạng.
\(\Rightarrow D>\frac{1}{80}.20=\frac{1}{4}\)
\(\Rightarrow A=C+D>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
\(\Rightarrow A>B\)
\(\text{Giải}\)
\(2x=3y\Leftrightarrow8x=12y;4y=5z\Leftrightarrow12y=15z\Leftrightarrow8x=12y=15z\)
\(\Leftrightarrow x=\frac{2}{3}y=\frac{8}{15}z\Rightarrow x+y+z=\frac{11}{5}x=11\Leftrightarrow x=5\Rightarrow y=\frac{10}{3};z=\frac{8}{3}\)
\(\text{Vậy: x=5;y=10 phần 3;z=8 phần 3}\)
\(\text{Ta có: trị tuyệt đối của 1 số luôn dương từ đó suy ra 4x dương suy ra x dương}\)
\(\Rightarrow3x+1+2+3=4x\Rightarrow x=1+2+3=6\)
\(\text{Vậy: x=6}\)
\(|x+\frac{1}{1\cdot5}|+|x+\frac{1}{5\cdot9}|+|x+\frac{1}{9\cdot13}|+...+|x+\frac{1}{379\cdot401}|=101x\)
Ta có:
\(|x+\frac{1}{1\cdot5}|\ge0\forall x\)
\(|x+\frac{1}{5\cdot9}|\ge0\forall x\)
\(|x+\frac{1}{9\cdot13}|\ge0\forall x\)
\(......\)
\(|x+\frac{1}{397\cdot401}|\ge0\forall x\)
\(\Rightarrow|x+\frac{1}{1\cdot5}|+|x+\frac{1}{5\cdot9}|+|x+\frac{1}{9\cdot13}|+...+|x+\frac{1}{397\cdot401}|\ge0\)
\(\Rightarrow\left(x+\frac{1}{1\cdot5}\right)+\left(x+\frac{1}{5\cdot9}\right)+\left(x+\frac{1}{9\cdot13}\right)+...+\left(x+\frac{1}{397\cdot401}\right)=101x\)
\(\Rightarrow\left(x+x+x+...+x\right)+\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+...+\frac{1}{397\cdot401}\right)=101x\)
\(\Rightarrow100x+\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+...+\frac{1}{397\cdot401}\right)=101x\)
Đặt \(A=\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+...+\frac{1}{397\cdot401}\)
\(\Rightarrow4A=4\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+...+\frac{1}{397\cdot401}\right)\)
\(\Rightarrow4A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+...+\frac{4}{397\cdot401}\)
\(\Rightarrow4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{397}-\frac{1}{401}\)
\(\Rightarrow4A=1-\frac{1}{401}\)
\(\Rightarrow4A=\frac{400}{401}\)
\(\Rightarrow A=\frac{400}{401}:4\)
\(\Rightarrow A=\frac{400}{401}\cdot\frac{1}{4}\)
\(\Rightarrow A=\frac{100}{401}\)
\(\Rightarrow100x+\frac{100}{401}=101x\)
\(\Rightarrow101x-100x=\frac{100}{401}\)
\(\Rightarrow x=\frac{100}{401}\)
Vậy \(x=\frac{100}{401}\)
Ta có:
1.Ix+1I + Ix+2I + Ix+3I + ... Ix+12I=11x
=> x>=0
=>x+1 + x+2 + x+3 + ... x+12=11x
=> (x+x+x+x..+x)+(1+2+...+12)=11x
Dãy 1;2;...;12 có số số hạng là:
(12-1)+1=12 ( số hạng )
=> (12x)+(12+1).12:2=12x+78=11x
=> -x=78
=> x=-78
k bít có đúng k
Ta có :
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|=4x\)
Vì \(\begin{cases}\left|x+1\right|\ge0\\\left|x+2\right|\ge0\\\left|x+3\right|\ge0\end{cases}\)
=> 4x > 0
=> x > 0
\(\Rightarrow\begin{cases}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+3\right|=x+3\end{cases}\)
=> ( x+1) + (x+2) + (x+3) = 4x
=> x = 6
Vậy x = 6
Vì GTNN của 1 số lớn hơn hoặc bằng 0 nên 4x lớn hơn hoặc bằng 0 nên x lờn hoặc bằng 0 nên x+1;x+2;x+3 lớn hơn không
nên ta có:
/x+1/+/x+2/+/x+3/=4x
<=>x+1+x+2+x+3=4x
<=> 3x+6=4x
=> 6=1x
Vậy x=6
/x+1/>= 0
/x+3/>=0
=>/x+1/+/x+3/>=0
=>3x>=0
=> x>=0
=> /x+1/=x+1 ;/x+3/=x+3=> x+1+x+3=3x=>2x+4=3x =>x=4
\(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+...+\left|x+\frac{1}{99\cdot100}\right|=100x\)
=> \(x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{99\cdot100}=100x\)
=> \(\left[x+x+x+...+x\right]+\left[\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{99\cdot100}\right]=100x\)
=> \(99x+\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right]=100x\)
=> \(99x+\left[1-\frac{1}{100}\right]=100x\)
=> \(99x+\frac{99}{100}=100x\)
=> \(100x-99x=\frac{99}{100}\)
=> \(x=\frac{99}{100}\)
Check lại có đúng không nhé
\(Ix^2+Ix-1II=x^2+2\Leftrightarrow x^2+Ix-1I=x^2+2\Rightarrow Ix-1I=2\)
\(\orbr{\begin{cases}x-1=2=>x=3\\x-1=-2=>x=-1\end{cases}}\)