\(^3+3x\) khi x=-1 là

a.2 b.-4 c.4 d.-2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: A

Câu 2: D

Câu 3: C

Câu 4: B

Câu 5: D

Câu 6: C

18 tháng 3 2020

giúp mik với mik đg cần ngay

29 tháng 3 2020

1. D, 2. D, 3.C, 4.D, 5. D, 6.B

13 tháng 5 2017

a)\(\dfrac{x+5}{3x-2}=\dfrac{x\left(x+5\right)}{x\left(3x-2\right)}\) b)\(\dfrac{2x-1}{4}=\dfrac{\left(2x-1\right)\left(2x+1\right)}{8x+4}\) c)\(\dfrac{2x\left(x-2\right)}{x^2-4x+4}=\dfrac{2x}{x-2}\) d) \(\dfrac{5x^2+10x}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x}{x-2}\)

3 tháng 12 2016

chịch chịch chịch

19 tháng 11 2018

a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)

\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)

19 tháng 11 2018

c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)

Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)

\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)

29 tháng 11 2017

2)

a) \(5x^2y-10xy^2\)

\(=5xy\left(x-2y\right)\)

b) \(3\left(x+3\right)-x^2+9\)

\(=3\left(x+3\right)-\left(x^2-3^2\right)\)

\(=3\left(x+3\right)-\left(x-3\right)\left(x+3\right)\)

\(=\left(x+3\right)\left[3-\left(x-3\right)\right]\)

\(=\left(x+3\right)\left(3-x+3\right)\)

\(=\left(x+3\right)\left(6-x\right)\)

c) \(x^2-y^2+xz-yz\)

\(=\left(x^2-y^2\right)+\left(xz-yz\right)\)

\(=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+z\right)\)

29 tháng 11 2017

3)

a) \(A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)

\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)

Điều kiện xác định là: \(\left\{{}\begin{matrix}x-2\ne0\Rightarrow x\ne2\\x+2\ne0\Rightarrow x\ne-2\end{matrix}\right.\)

b) \(A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)

\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\) MTC: \(\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\dfrac{x^2-x\left(x+2\right)+2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\dfrac{x^2-x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)

c) Thay \(x=1\) và biểu thức A ta được:

\(\dfrac{-4}{\left(1-2\right)\left(1+2\right)}=\dfrac{-4}{\left(-1\right).3}=\dfrac{-4}{-3}=\dfrac{4}{3}\)

Vậy giá trị của biểu thức A tại \(x=1\)\(\dfrac{4}{3}\)

21 tháng 2 2020

\(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=3\\ \Leftrightarrow x^2-3x-\left(x^2-x+2x-2\right)=3\\ \Leftrightarrow x^2-x^2-3x-x+2=3\\ \Leftrightarrow-4x=3-2\\ \Leftrightarrow-4x=1\\ \Leftrightarrow x=-\frac{1}{4}\)

Vậy nghiệm của phương trình trên là \(-\frac{1}{4}\)

\(\Rightarrow\)Chọn B

I ) Trắc nghiệm:Câu 1: Kết quả của phép tính (2x-3)(2x+3) bằng :a) \(4x^2+9\)b) \(4x^2-9\)c)\(9x^2+4\)d) \(9x^2-4\)Câu 2:Kết quả phân tích đa thức \(-2x+1+x^2\)thành nhân tử là:a) \(\left(x-1\right)^2\)b) \(\left(x+1^2\right)\)c) \(-\left(x+1\right)^2\)d) \(-\left(x-1\right)^2\)Câu 3: Kết quả phép tính: \(20x^2y^6z^3:5xy^2z^2\)là:a) \(4xy^3z^2\)b) \(4xy^3z^3\)c) \(4xy^4z\)d) \(4x^2y^4z\)Câu 4: Phép chia đa thức \(8x^3-1\) cho đa...
Đọc tiếp

I ) Trắc nghiệm:

Câu 1: Kết quả của phép tính (2x-3)(2x+3) bằng :

a) \(4x^2+9\)

b) \(4x^2-9\)

c)\(9x^2+4\)

d) \(9x^2-4\)

Câu 2:Kết quả phân tích đa thức \(-2x+1+x^2\)thành nhân tử là:

a) \(\left(x-1\right)^2\)

b) \(\left(x+1^2\right)\)

c) \(-\left(x+1\right)^2\)

d) \(-\left(x-1\right)^2\)

Câu 3: Kết quả phép tính: \(20x^2y^6z^3:5xy^2z^2\)là:

a) \(4xy^3z^2\)

b) \(4xy^3z^3\)

c) \(4xy^4z\)

d) \(4x^2y^4z\)

Câu 4: Phép chia đa thức \(8x^3-1\) cho đa thức \(4x^2+2x+1\)có thương là:

a) 2x + 1          b) -2x + 1       c)-2x - 1    d) 2x - 1

Câu 5: Mẫu thức chung của hai phân thức \(\frac{4}{x^2-9}\)và \(\frac{1-x}{x^2+3x}\)là:

a) \(\left(x-9\right)\left(x^2+3x\right)\)

b) \(x\left(x-9\right)\)

c) \(x\left(x+3\right)\left(x-3\right)\)

d) \(\left(x+3\right)\left(x-9\right)\)

Câu 6: Tổng hai phân thức: \(\frac{2x-1}{2x}\)\(\frac{4x+1}{2x}\)là:

a) \(1\)

b) \(\frac{6x-2}{2x}\)

c) \(3\)

d) \(\frac{6x+2}{2x}\)

Câu 7: Kết quả phép chia \(\frac{6x-3}{2x^3y^2}\) : \(\frac{12x-6}{4x^2y^3}\) là:

a) \(\frac{9\left(2x-1\right)^2}{4x^5y^5}\)

b) \(\frac{y}{x}\)

c) \(\frac{-y}{x}\)

d) \(\frac{x}{y}\)

Câu 8: Cho hình vẽ, biết AB//CD và AB= 4,5 cm ; DC= 6,5 cm . Độ dài EF là :

a) 4,5 cm

b) 5 cm

c) 5,5 cm

d) 6,5 cm

 

 

1
11 tháng 12 2018

\(\left(2x-3\right).\left(2x+3\right)=4x^2-9\)

\(20x^2y^6z^3:5xy^2z^2=4xy^4z\)

\(\frac{8x^3-1}{4x^2+2x+1}=\frac{\left(4x^2+2x+1\right).\left(2x-1\right)}{4x^2+2x+1}=2x-1\)

\(\frac{2x-1}{2x}+\frac{4x+1}{2x}=\frac{2x-1+4x+1}{2x}=3\)

Bài 1: Thực hiện phép tính a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\) b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\) c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\) d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\) e,...
Đọc tiếp

Bài 1: Thực hiện phép tính

a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\)

b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\)

c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\)

d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)

e, \(\dfrac{x^3}{x-1}\)-\(\dfrac{x^2}{x+1}\)-\(\dfrac{1}{x-1}\)+\(\dfrac{1}{x+1}\)

f, \(\dfrac{x^3+x^2-2x-20}{x^2-4}\)-\(\dfrac{5}{x+2}\)+\(\dfrac{3}{x-2}\)

g, \(\left\{\dfrac{x-y}{x+y}+\dfrac{x+y}{x-y}\right\}\).\(\left\{\dfrac{x^2+y^2}{2xy}\right\}\).\(\dfrac{xy}{x^2+y^2}\)

h, \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}\)+\(\dfrac{1}{\left(b-c\right)\left(c-a\right)}\)+\(\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

i, \(\dfrac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

k, \(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left\{\dfrac{x^2}{y}-\dfrac{y^2}{x}\right\}\right]\):\(\dfrac{x-y}{x}\)

Bài 2: Rút gọn các phân thức:

a, \(\dfrac{25x^2-20x+4}{25x^2-4}\)

b, \(\dfrac{5x^2+10xy+5y^2}{3x^3+3y^3}\)

c, \(\dfrac{x^2-1}{x^3-x^2-x+1}\)

d, \(\dfrac{x^3+x^2-4x-4}{x^4-16}\)

e, \(\dfrac{4x^4-20x^3+13x^2+30x+9}{\left(4x^2-1\right)^2}\)

Bài 3: Rút gọn rồi tính giá trị các biểu thức:

a, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\) với a = 4, b = -5, c = 6

b, \(\dfrac{16x^2-40xy}{8x^2-24xy}\) với \(\dfrac{x}{y}\) = \(\dfrac{10}{3}\)

c, \(\dfrac{\dfrac{x^2+xy+y^2}{x+y}-\dfrac{x^2-xy+y^2}{x-y}}{x-y-\dfrac{x^2}{x+y}}\) với x = 9, y = 10

Bài 4: Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên:

a, \(\dfrac{x^3-x^2+2}{x-1}\)

b, \(\dfrac{x^3-2x^2+4}{x-2}\)

c, \(\dfrac{2x^3+x^2+2x+2}{2x+1}\)

d, \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)

e, \(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)

2
8 tháng 12 2017

Giúp mình nhé mọi người ! leuleu

8 tháng 12 2017

\(1.\)

\(a.\)

\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=x-1\)

\(b.\)

\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)

\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)

\(=\dfrac{2y}{\left(x-y\right)}\)

Tương tự các câu còn lại

a: \(A=2x^2-2xy-y^2+2xy=2x^2-y^2\)

\(=2\cdot\dfrac{4}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)

b: \(B=5x^2-20xy-4y^2+20xy=5x^2-4y^2\)

\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}\)

=1/5-1=-4/5

\(C=x^3+6x^2+12x+8=\left(x+2\right)^3=\left(-9\right)^3=-729\)

d: \(D=20x^3-10x^2+5x-20x^2+10x+4\)

\(=20x^3-30x^2+15x+4\)

\(=20\cdot5^3-30\cdot5^2+15\cdot2+4=1784\)