Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\int\limits^5_3\dfrac{dx}{x^2-x}=\int\limits^5_3\dfrac{dx}{x\left(x-1\right)}=\int\limits^5_3\left(\dfrac{1}{x-1}-\dfrac{1}{x}\right)dx\)
\(=\left(ln\left(x-1\right)-lnx\right)|^5_3=ln4-ln5-\left(ln2-ln3\right)\)
\(=2ln2-ln5-ln2+ln3\)
\(=-ln5+ln3+ln2\)
\(\Rightarrow a=-1;b=1;c=1\)
1/ \(\int\limits^e_1\left(x+\frac{1}{x}+\frac{1}{x^2}\right)dx=\left(\frac{x^2}{2}+lnx-\frac{1}{x}\right)|^e_1=\frac{e^2}{2}-\frac{1}{e}+\frac{3}{2}\)
2/ \(\int\limits^2_1\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)dx=\int\limits^2_1\left(x\sqrt{x}+1\right)dx=\int\limits^2_1\left(x^{\frac{3}{2}}+1\right)dx\)
\(=\left(\frac{2}{5}.x^{\frac{5}{2}}+x\right)|^2_1=\frac{8\sqrt{2}-7}{5}\)
3/
\(\int\limits^2_1\frac{2x^3-4x+5}{x}dx=\int\limits^2_1\left(2x^2-4+\frac{5}{x}\right)dx=\left(\frac{2}{3}x^3-4x+5lnx\right)|^2_1=\frac{2}{3}+5ln2\)
4/ \(\int\limits^2_1x^2\left(3x-1\right)\frac{2}{x}dx=\int\limits^2_1\left(6x^2-2x\right)dx=\left(2x^3-x^2\right)|^2_1=11\)
\(\int f\left(4x\right)dx=\frac{1}{4}\int f\left(4x\right)d\left(4x\right)=\frac{1}{16}\left(4x\right)^2+\frac{3}{4}\left(4x\right)+C\)
\(\Rightarrow\int f\left(4x\right)d\left(4x\right)=\frac{1}{4}\left(4x\right)^2+3.\left(4x\right)+C\)
\(\Rightarrow\int f\left(x+2\right)dx=\int f\left(x+2\right)d\left(x+2\right)=\frac{1}{4}\left(x+2\right)^2+3\left(x+2\right)+C\)
\(=\frac{1}{4}x^2+4x+C\)
1) Đặt \(t=1+\sqrt{x-1}\Leftrightarrow x=\left(t-1\right)^2+1\forall t\ge1\Rightarrow dx=d\left(t-1\right)^2=2dt\)
\(\Rightarrow I_1=\int\frac{\left(t-1\right)^2+1}{t}\cdot2dt=2\int\frac{t^2-2t+2}{t}dt=2\int\left(t-2+\frac{2}{t}\right)dt\\ =t^2-4t+4lnt+C\)
Thay x vào ta có...
2) \(I_2=\int\frac{2sinx\cdot cosx}{cos^3x-\left(1-cos^2x\right)-1}dx=\int\frac{-2cosx\cdot d\left(cosx\right)}{cos^3x+cos^2x-2}=\int\frac{-2t\cdot dt}{t^3+t-2}\)
\(I_2=\int\frac{-2t}{\left(t-1\right)\left(t^2+2t+2\right)}dt=-\frac{2}{5}\int\frac{dt}{t-1}+\frac{1}{5}\int\frac{2t+2}{t^2+2t+2}dt-\frac{6}{5}\int\frac{dt}{\left(t+1\right)^2+1}\)
Ta có:
\(\int\frac{2t+2}{t^2+2t+2}dt=\int\frac{d\left(t^2+2t+2\right)}{t^2+2t+2}=ln\left(t^2+2t+2\right)+C\)
\(\int\frac{dt}{\left(t+1\right)^2+1}=\int\frac{\frac{1}{cos^2m}}{tan^2m+1}dm=\int dm=m+C=arctan\left(t+1\right)+C\)
Thay x vào, ta có....
Note: \(\sqrt{\dfrac{1}{4x}+\dfrac{\sqrt{x}+e^x}{\sqrt{x}.e^{2x}}}=\sqrt{\dfrac{1}{4x}+\dfrac{1}{e^x.\sqrt{x}}+\dfrac{1}{e^{2x}}}=\sqrt{\left(\dfrac{1}{2\sqrt{x}}+\dfrac{1}{e^x}\right)^2}=\dfrac{1}{2\sqrt{x}}+\dfrac{1}{e^x}\)
Vấn đề bây giờ có lẽ đã quá đơn giản
a) \(I_1=\int\frac{dx}{2\sin x\cos x}=\frac{1}{2}\int\frac{\cos x}{\sin x}.\frac{dx}{\cos^2x}\)
Đặt \(\tan x=t\)
\(=\frac{1}{2}\int\frac{dt}{t}=\frac{1}{2}\ln\left|t\right|+C=\frac{1}{2}\ln\left|\tan x\right|+C\)
b) \(I_2=\int\frac{\sin^4x}{\cos^4x}.\frac{1}{\cos^2x}.\frac{dx}{\cos^2x}\)
Đặt \(t=\tan x\)
\(=\int t^4\left(1+t^2\right)dt\)
\(=\int t^4dt+\int t^6dt=\frac{t^5}{5}+\frac{t^7}{7}+C\)
\(=\frac{\tan^5x}{5}+\frac{\tan^7x}{7}+C\)
c) \(I_3=\int\tan^3xdx\) đặt \(t=\tan x\)
\(=\int\frac{t^3}{1+t^2}dt=\int\left(t-\frac{t}{1+t^2}\right)dt\)
\(=\frac{t^2}{2}-\frac{1}{2}\ln\left(1+t^2\right)+C\)
\(=\frac{1}{2}\tan^2x+\ln\left|\cos x\right|+C\)
d) \(\int\frac{dx}{\sin^4x}=\int\frac{1}{\sin^2x}.\frac{1}{\sin^2x}dx=-\int\left(1+\cot^2x\right)d\left(\cot x\right)\)
\(=-\cot x-\frac{1}{3}\cot^3x+C\)
\(I=\int\limits^2_1\frac{ln\left(1+2x\right)}{x^2}dx\)
Đặt \(\left\{{}\begin{matrix}u=ln\left(1+2x\right)\\dv=\frac{dx}{x^2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{2}{1+2x}dx\\v=-\frac{1}{x}\end{matrix}\right.\)
\(\Rightarrow I=-\frac{1}{x}.ln\left(1+2x\right)|^2_1+\int\limits^2_1\frac{2dx}{x\left(2x+1\right)}=-\frac{1}{2}ln5+ln3+I_1\)
\(I_1=\int\limits^2_1\frac{4dx}{2x\left(2x+1\right)}=4\int\limits^2_1\left(\frac{1}{2x}-\frac{1}{2x+1}\right)dx=2ln\left(\frac{2x}{2x+1}\right)|^2_1=2ln2+2ln3-2ln5\)
\(\Rightarrow I=-\frac{5}{2}ln5+3ln3+2ln2\) \(\Rightarrow\left\{{}\begin{matrix}a=-5\\b=3\\c=2\end{matrix}\right.\) \(\Rightarrow a+2\left(b+c\right)=5\)
a)
\(\frac{1}{x^2-4x+4}dx=\frac{1}{\left(x-2\right)^2}dx=-\frac{1}{x-2}+C\)
b) \(\frac{1}{9x^2-12x+4}dx=\frac{1}{9\left(x-\frac{2}{3}\right)^2}dx=\frac{1}{9}.\frac{1}{\left(x-\frac{2}{3}\right)^2}dx=\frac{1}{9}.\frac{1}{x-\frac{2}{3}}=\frac{1}{9x-6}+C\)
\(I=\int\limits^5_3\left(\frac{2}{2x-1}-\frac{10}{\left(2x-1\right)^2}\right)dx=\left(2ln\left(2x-1\right)+\frac{5}{2x-1}\right)|^5_3=2ln\frac{9}{5}-\frac{4}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=5\\c=-4\end{matrix}\right.\)