Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8.
\(I=\int sinx.cos2xdx=\int\left(2cos^2x-1\right)sinxdx\)
\(=\int\left(1-2cos^2x\right)d\left(cosx\right)=cosx-\frac{2}{3}cos^3x+C\)
9.
\(I=\int\frac{sin2x}{1+cos^2x}dx=-\int\frac{2\left(-sinx\right).cosx}{1+cos^2x}dx=-\int\frac{d\left(cos^2x\right)}{1+cos^2x}\)
\(=-ln\left|1+cos^2x\right|+C\)
6.
\(I=\int cos^3xdx=\int\left(1-sin^2x\right)cosxdx\)
\(=\int\left(1-sin^2x\right)d\left(sinx\right)=sinx-\frac{1}{3}sin^3x+C\)
7.
\(I=\int sin^2x.cos^3xdx=\int sin^2x\left(1-sin^2x\right)cosxdx\)
\(=\int\left(sin^2x-sin^4x\right)d\left(sinx\right)=\frac{1}{3}sin^3x-\frac{1}{5}sin^5x+C\)
a) \(\int\left(x+\ln x\right)x^2\text{d}x=\int x^3\text{d}x+\int x^2\ln x\text{dx}\)
\(=\dfrac{x^4}{4}+\int x^2\ln x\text{dx}+C\) (*)
Để tính: \(\int x^2\ln x\text{dx}\) ta sử dụng công thức tính tích phân từng phần như sau:
Đặt \(\left\{{}\begin{matrix}u=\ln x\\v'=x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u'=\dfrac{1}{x}\\v=\dfrac{1}{3}x^3\end{matrix}\right.\)
Suy ra:
\(\int x^2\ln x\text{dx}=\dfrac{1}{3}x^3\ln x-\dfrac{1}{3}\int x^2\text{dx}\)
\(=\dfrac{1}{3}x^3\ln x-\dfrac{1}{3}.\dfrac{1}{3}x^3\)
Thay vào (*) ta tính được nguyên hàm của hàm số đã cho bằng:
(*) \(=\dfrac{1}{3}x^3-\dfrac{1}{3}x^3\ln x+\dfrac{1}{9}x^3+C\)
\(=\dfrac{4}{9}x^3-\dfrac{1}{3}x^3\ln x+C\)
b) Đặt \(\left\{{}\begin{matrix}u=x+\sin^2x\\v'=\sin x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u'=1+2\sin x.\cos x\\v=-\cos x\end{matrix}\right.\)
Ta có:
\(\int\left(x+\sin^2x\right)\sin x\text{dx}=-\left(x+\sin^2x\right)\cos x+\int\left(1+2\sin x\cos^2x\right)\text{dx}\)
\(=-\left(x+\sin^2x\right)\cos x+\int\cos x\text{dx}+2\int\sin x.\cos^2x\text{dx}\)
\(=-\left(x+\sin^2x\right)\cos x+\sin x-2\int\cos^2x.d\left(\cos x\right)\)
\(=-\left(x+\sin^2x\right)\cos x+\sin x-2\dfrac{\cos^3x}{3}+C\)
a) \(\sin^4x=\left(\sin^2x\right)^2=\left(\dfrac{1-\cos2x}{2}\right)^2\)
\(=\dfrac{1}{4}\left(1-2\cos2x+\cos^22x\right)\)
\(=\dfrac{1}{4}\left(1-2.\cos2x+\dfrac{1+\cos4x}{2}\right)\)
\(=\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\)
Vậy:
\(\int\sin^4x\text{dx}=\int\left(\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\right)\text{dx}\)
\(=\dfrac{3}{8}x-\dfrac{1}{4}\sin2x+\dfrac{1}{32}\sin4x+C\)
\(\int\left(3x^2-2x-4\right)dx=x^3-x^2-4x+C\)
\(\int\left(sin3x-cos4x\right)dx=-\dfrac{1}{3}cos3x-\dfrac{1}{4}sin4x+C\)
\(\int\left(e^{-3x}-4^x\right)dx=-\dfrac{1}{3}e^{-3x}-\dfrac{4^x}{ln4}+C\)
d. \(I=\int lnxdx\)
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=x\end{matrix}\right.\)
\(\Rightarrow u=x.lnx-\int dx=x.lnx-x+C\)
e. Đặt \(\left\{{}\begin{matrix}u=x\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I=x.e^x-\int e^xdx=x.e^x-e^x+C\)
f.
Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=sinxdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)
\(\Rightarrow I=-\left(x+1\right)cosx+\int cosxdx=-\left(x+1\right)cosx+sinx+C\)
g.
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{1}{2}x^2.lnx-\dfrac{1}{2}\int xdx=\dfrac{1}{2}x^2.lnx-\dfrac{1}{4}x^2+C\)
\(a,\int sin2x.cosxdx=\int\dfrac{1}{2}\left[sin3x+sinx\right]dx=\dfrac{1}{2}\int sin3xdx+\dfrac{1}{2}\int sinxdx=\dfrac{-1}{6}cos3x-\dfrac{1}{2}cosx\)
1. Đặt \(\left\{{}\begin{matrix}u=x\\dv=\dfrac{dx}{sin^2x}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cotx\end{matrix}\right.\)
Do đó I= \(-x.cotx+\int cotxdx\)= \(-xcotx+ln\left|sinx\right|\)
2. Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=\dfrac{dx}{e^x}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-e^{-x}\end{matrix}\right.\)
Do đó I= \(-\left(x+1\right)e^{-x}+\int e^{-x}dx\)=\(-\left(x+1\right)e^{-x}-e^{-x}\)
=\(-\left(x+2\right)e^{-x}\)
1.
\(I=\int\dfrac{cot^2x}{sin^6x}dx=\int\dfrac{cot^2x}{sin^4x}.\dfrac{1}{sin^2x}=\int cot^2x\left(1+cot^2x\right)^2.\dfrac{1}{sin^2x}dx\)
Đặt \(u=cotx\Rightarrow du=-\dfrac{1}{sin^2x}dx\)
\(I=-\int u^2\left(1+u^2\right)^2du=-\int\left(u^6+2u^4+u^2\right)du\)
\(=-\dfrac{1}{7}u^7+\dfrac{2}{5}u^5+\dfrac{1}{3}u^3+C\)
\(=-\dfrac{1}{7}cot^7x+\dfrac{2}{5}cot^5x+\dfrac{1}{3}cot^3x+C\)
2.
\(I=\int\left(e^{sinx}+cosx\right).cosxdx=\int e^{sinx}.cosxdx+\int cos^2xdx\)
\(=\int e^{sinx}.d\left(sinx\right)+\dfrac{1}{2}\int\left(1+cos2x\right)dx\)
\(=e^{sinx}+\dfrac{1}{2}x+\dfrac{1}{4}sin2x+C\)
a)
Đặt \(u=\sqrt{x-3}\Rightarrow x=u^2+3\)
\(I_1=\int (2x-3)\sqrt{x-3}dx=\int (2u^2+3)ud(u^2+3)=2\int (2u^2+3)u^2du\)
\(\Leftrightarrow I_1=4\int u^4du+6\int u^2du=\frac{4u^5}{5}+2u^3+c\)
b)
\(I_2=\int \frac{xdx}{\sqrt{(x^2+1)^3}}=\frac{1}{2}\int \frac{d(x^2+1)}{\sqrt{(x^2+1)^2}}\)
Đặt \(u=\sqrt{x^2+1}\). Khi đó:
\(I_2=\frac{1}{2}\int \frac{d(u^2)}{u^3}=\int \frac{udu}{u^3}=\int \frac{du}{u^2}=\frac{-1}{u}+c\)
c)
\(I_3=\int \frac{e^xdx}{e^x+e^{-x}}=\int \frac{e^{2x}dx}{e^{2x}+1}=\frac{1}{2}\int\frac{d(e^{2x}+1)}{e^{2x}+1}\)
\(\Leftrightarrow I_3=\frac{1}{3}\ln |e^{2x}+1|+c=\frac{1}{2}\ln|u|+c\)
d)
\(I_4=\int \frac{dx}{\sin x-\sin a}=\int \frac{dx}{2\cos \left ( \frac{x+a}{2} \right )\sin \left ( \frac{x-a}{2} \right )}\)
\(\Leftrightarrow I_4=\frac{1}{\cos a}\int \frac{\cos \left ( \frac{x+a}{2}-\frac{x-a}{2} \right )dx}{2\cos \left ( \frac{x+a}{2} \right )\sin \left ( \frac{x-a}{2} \right )}=\frac{1}{\cos a}\int \frac{\cos \left ( \frac{x-a}{2} \right )dx}{2\sin \left ( \frac{x-a}{2} \right )}+\frac{1}{\cos a}\int \frac{\sin \left ( \frac{x+a}{2} \right )dx}{2\cos \left ( \frac{x+a}{2} \right )}\)
\(\Leftrightarrow I_4=\frac{1}{\cos a}\left ( \ln |\sin \frac{x-a}{2}|-\ln |\cos \frac{x+a}{2}| \right )+c\)
e)
Đặt \(t=\sqrt{x}\Rightarrow x=t^2\)
\(I_5=\int t\sin td(t^2)=2\int t^2\sin tdt\)
Đặt \(\left\{\begin{matrix} u=t^2\\ dv=\sin tdt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2tdt\\ v=-\cos t\end{matrix}\right.\)
\(\Rightarrow I_5=-2t^2\cos t+4\int t\cos tdt\)
Tiếp tục nguyên hàm từng phần \(\Rightarrow \int t\cos tdt=t\sin t+\cos t+c\)
\(\Rightarrow I_5=-2t^2\cos t+4t\sin t+4\cos t+c\)
4 câu 1,3,4,5 giống nhau, mình làm 1 câu và bạn dựa vào đó tự xử lý mấy câu còn lại nhé
1/ \(I=\int sin2x.e^{3x}dx\) \(\Rightarrow\left\{{}\begin{matrix}u=sin2x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2cos2x.dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{1}{3}sin2x.e^{3x}-\dfrac{2}{3}\int cos2x.e^{3x}dx=\dfrac{1}{3}sin2x.e^{3x}-\dfrac{2}{3}I_1\)
Xét \(I_1=\int cos2x.e^{3x}dx\) \(\Rightarrow\left\{{}\begin{matrix}u=cos2x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-2sin2xdx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)
\(\Rightarrow I_1=\dfrac{1}{3}cos2x.e^{3x}+\dfrac{2}{3}\int sin2x.e^{3x}dx=\dfrac{1}{3}cos2x.e^{3x}+\dfrac{2}{3}I\)
\(\Rightarrow I=\dfrac{1}{3}sin2x.e^{3x}-\dfrac{2}{3}\left(\dfrac{1}{3}cos2x.e^{3x}+\dfrac{2}{3}I\right)\)
\(\Rightarrow\dfrac{13}{9}I=\dfrac{1}{9}e^{3x}\left(3sin2x-2cos2x\right)\)
\(\Rightarrow I=\dfrac{1}{13}e^{3x}\left(3sin2x-2cos2x\right)+C\)
3/ \(\int e^x\left(\dfrac{1+cos2x}{2}\right)dx=\dfrac{1}{2}\int e^xdx+\dfrac{1}{2}\int cos2x.e^xdx=\dfrac{e^x}{2}+\dfrac{1}{2}I_1\)
\(I_1\) có cách tính y hệt như bài 1, bạn nguyên hàm từng phần 2 lần là xong
4/ Cũng hạ bậc tương tự câu trên và xử lý
5/ \(I=\int e^{-x}\left(\dfrac{cos3x+3cosx}{4}\right)dx=\dfrac{1}{4}\int e^{-x}\left(cos3x+3cosx\right)dx\)
\(\Rightarrow I=\dfrac{1}{4}\int e^{-x}cos3x.dx+\dfrac{3}{4}\int e^{-x}cosx.dx=I_1+I_2\)
Dùng phương pháp tương tự bài 1, lần lượt tính \(I_1\) và \(I_2\) rồi cộng vào
2/\(I=\int\dfrac{x^4}{\left(x^2-1\right)^2}dx=\int\left(1+\dfrac{2x^2-1}{\left(x^2-1\right)^2}\right)dx=\int\left(1+\dfrac{2}{x^2-1}+\dfrac{1}{\left(x^2-1\right)^2}\right)dx\)
\(=\int\left(1+\dfrac{1}{x-1}-\dfrac{1}{x+1}+\dfrac{1}{4}\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right)^2\right)dx\)
\(=\int\left(1+\dfrac{1}{x-1}-\dfrac{1}{x+1}+\dfrac{1}{4}\left(\dfrac{1}{\left(x-1\right)^2}+\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{x+1}-\dfrac{1}{x-1}\right)\right)dx\)
\(=\int\left(1+\dfrac{3}{4}\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right)+\dfrac{1}{4}\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{4}\dfrac{1}{\left(x-1\right)^2}\right)dx\)
\(=x+\dfrac{3}{4}ln\left|\dfrac{x-1}{x+1}\right|-\dfrac{1}{4\left(x+1\right)}-\dfrac{1}{4\left(x-1\right)}+C\)
\(=x+\dfrac{3}{4}ln\left|\dfrac{x-1}{x+1}\right|-\dfrac{x}{2\left(x^2-1\right)}+C\)
thầy e cx cho câu giống câu 2 kia, e tắc luôn ạ, may mà anh lm r :))
Giải:
$\int sin^2xcosxdx=\int sin^2xd(sinx)=\frac{sin^3x}{3}+c$
\(\int sin^2xcosxdx=\int sin^2xd\left(sinx\right)=\dfrac{sin^3x}{3}+c\)