K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Day la duong thang Simson ma , con cau b dung duong thang Steiner la ra 

5 tháng 2 2020

Em kiểm tra lại đề bài . Gọi P, Q là hình chiếu của K trên BC và gì nữa vậy?

13 tháng 7 2020

Gọi N là giao điểm của PQ và AH, gọi M là giao điểm của AH với (O). Khi đó dễ thấy tam giác PHK cân. Do AH//KP nên tứ giác KPMN là hình thang.

Lại có BPKQ nội tiếp nên suy ra được \(\widehat{QBK}=\widehat{ABK}=\widehat{ AMK}=\widehat{QPK}\)nên tứ giác KPMN nội tiếp. Do đó KPMN là hình thang cân. Do đó \(\widehat{PMH}=\widehat{PHM}=\widehat{KNM}\)nên KN//HP.

Do vậy tứ giác HPKN là hình bình hành. Từ đó ta có điều phải chứng minh.

6 tháng 2 2019

A B C O E F S T I Q K D N J L P M G R

a) +) Dễ thấy: ^BAD = ^CAO (Cùng phụ ^ABC). Mà ^BAI = ^CAI nên ^OAI = ^DAI 

Suy ra: ^OAI = ^DAO/2 = ^BAI - ^BAD = ^BAC/2 - 900 + ^ABC = ^BAC/2 - (^BAC+^ABC+^ACB)/2 + ^ABC

= (^ABC + ^ACB)/2 = \(\frac{\alpha-\beta}{2}=\frac{\alpha^2-\beta^2}{2\left(\alpha+\beta\right)}=\frac{\alpha^2-\beta^2}{sđ\widebat{BAC}}\) (đpcm).

+) Kẻ đường kính AG của đường tròn (O). Dễ thấy: Tứ giác BICJ nội tiếp, gọi (BICJ) cắt AC tại R khác C.

Do AK=2R nên AK = AG. Ta có: ^ARB = ^ARI + ^BRI = ^IBC + ^ICB = (^ABC+^ACB)/2 = ^ABI + ^IBC = ^ABR

=> \(\Delta\)BAR cân tại A => AB = AR. Kết hợp với AK=AG, ^BAG = ^RAK (cmt) => \(\Delta\)ABG = \(\Delta\)ARK (c.g.c)

=> ^ABG = ^ARK = 900 => ^KRC = ^KDC = 900 => Tứ giác DKCR nội tiếp 

=> AD.AK = AR.AC = AI.AJ => Tứ giác DIJK nội tiếp (đpcm).

b) \(\Delta\)KAG cân tại A có phân giác AI => AI vuông góc KG hay AM vuông góc KG. Mà AM vuông góc GM

Nên K,G,M thẳng hàng => K,M,G,N thẳng hàng => AM vuông góc KN tại M

Ta thấy: M là trung điểm IJ, KM vuông góc IJ tại M nên \(\Delta\)KIJ cân tại K

Xét đường tròn (KIJ): KI = KJ, KN vuông góc IJ => KN là đường kính của (KIJ)

Mà D thuộc đường tròn (KIJ) (cmt) => ^KDN = 900 => ND vuông góc AK tại D => N,L,D thẳng hàng

Xét \(\Delta\)AKN có: AM vuông góc KN, ND vuông góc AK, AM và ND cùng đi qua L

=> L là trực tâm \(\Delta\)AKN => KL vuông góc AN (đpcm).

c) Gọi P là trực tâm của \(\Delta\)AJQ

Do \(\Delta\)KIJ cân tại K => ^KIJ = ^KJI. Có tứ giác DIJK nội tiếp => ^KIJ = ^KDJ => ^KDJ = ^KJI

Từ đó: \(\Delta\)DKJ ~ \(\Delta\)JKA (g.g) => KJ2 = KD.KA => KQ2 = KD.KA => \(\Delta\)KQD ~ \(\Delta\)KAQ (c.g.c)

Suy ra: ^QDJ = ^KDQ + ^KDJ = ^AQK + ^AJK = 1800 - ^QAJ = 1800 - ^QPJ => Tứ giác PQDJ nội tiếp

^PDJ = ^PQJ => ^PDK + ^KDJ = ^PDK + ^QJA = ^PQJ => ^PDK = ^PQJ - ^QJA = 900

=> PD vuông góc AD. Mà BC vuông góc AD tại D nên PD trùng BC hay P nằm trên BC (đpcm).

d) Ta thấy: ^ABC > ^ACB (\(\alpha>\beta\)) => ^BAD < ^CAD. Lại có: ^BAI = ^CAI, ^BAD + ^CAD = ^BAI + ^CAI = ^BAC

Suy ra ^BAD < ^BAI => B và I nằm khác khía so với AD => D thuộc [BF]

Hạ IS, IT vuông góc với AC,AB thì F thuộc [DT] => Thứ tự các điểm trên BC là B,D,F,T,C. Do đó: ^IFC = ^DFK < 900

Ta xét thứ tự các điểm trên cạnh AC: 

+) A,S,E,C: Vì IS vuông góc AC, theo thứ tự này thì ^IEC > 900. Cũng dễ có: \(\Delta\)IES = \(\Delta\)IFT (Ch.cgv)

=> ^IES = ^IFT < 900  => ^IFT + ^IEC = 1800 => Tứ giác FIEC nội tiếp => ^ECF = ^DIK

Mà ^DIK = ^DJK = ^DAI = \(\frac{\alpha-\beta}{2}\) nên \(\beta=\frac{\alpha-\beta}{2}\Rightarrow\alpha=3\beta\) (*)

+) A,E,S,C: Trong TH này thì ^IEC < 900 => ^IFT + ^IEC < 1800 => ^ECF + ^EIF > 1800

=> ^ECF > ^DIK hay \(\beta>\frac{\alpha-\beta}{2}\Rightarrow\alpha< 3\beta\)   (**)

Từ (*) và (**) suy ra: \(\alpha\le3\beta\) (đpcm).

29 tháng 5 2017

A D E C I B J H K M O

  1. vÌ H là trực tâm của tam giác ABC , \(BD⊥BC,CE⊥AB\Rightarrow\widehat{BEC}=\widehat{BDC}=90^0\) nên BCDE nội tiếp đường tròn đường kính BC. Tâm đường tròn nội tiếp BCDE là J ( trung điểm BC)
  2. I đối xứng với A qua O => AI là đường kính của đường tròn tâm O =>\(\widehat{ACI}=\widehat{ABI}=90^0\)\(\hept{\begin{cases}BD⊥AC\\CI⊥AC\end{cases}\Rightarrow BD}\downarrow\uparrow CI\left(1\right)\) VÀ\(\hept{\begin{cases}CE⊥AB\\BI⊥AB\end{cases}\Rightarrow CE\uparrow\downarrow BI\left(2\right)}\)Từ (1) và (2) BHCI là hình bình hành,mà J LÀ Trung điểm của BC nên J là giao điểm của hai đường chéo HI và BC của hbh BICH nên ta có I,J,H thẳng hàng (DPCM)
  3. Vì BCDE là tứ giác nội tiếp nên \(\widehat{ABC}=\widehat{ADK}\left(3\right)\)mặt khác ABIC nội tiếp (O) nên \(\widehat{IAC}=\widehat{IBC}\left(4\right)\)ta lại có \(BI⊥AB\Rightarrow\widehat{ABC}+\widehat{IBC}=90^O\left(5\right)\)TỪ 3,4,5 ta có \(\widehat{IAC}+\widehat{ADK}=90^O\)hay \(DE⊥AM\Rightarrow\Delta ADM\)vuông tại D và có DE là đường cao tương ứng tại D nên theo hệ thức lượng trong tam giác vuông có (DPCM) \(\frac{1}{DK^2}=\frac{1}{DA^2}+\frac{1}{DM^2}\)

a. Hai tam giác vuông AMO và ANO có AO cạnh huyền chung; ^MAO = ^NAO => ΔAMO =ΔANO (cạnh huyền - góc nhọn) => AM = AN. Trong đường tròn đường kính AO có dây AN = dây AM => Cung AN = cungAM => ^MHA = ^NHA (chắn hai cung bằng nhau )

=> HA là phân giác của ^MHN (đpcm)

b. Ta có ^AMO = ^AHO =^ANO = 90 nên các điểm A, M, H, O, N thuộc đường tròn đường kinh AO