Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Ta có: \(48751-\left(10425+y\right)=3828:12\)
\(\Leftrightarrow y+10425=48751-319=48432\)
hay y=38007
b: Ta có: \(\left(2367-y\right)-\left(2^{10}-7\right)=15^2-20\)
\(\Leftrightarrow2367-y=1222\)
hay y=1145
Bài 2:
Ta có: \(8\cdot6+288:\left(x-3\right)^2=50\)
\(\Leftrightarrow288:\left(x-3\right)^2=2\)
\(\Leftrightarrow\left(x-3\right)^2=144\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)
3.(7 + x) = 88 - 82
3.(7 + x) = 24
7 + x = 24 : 3
7 + x = 8
x = 8 - 7
x = 1
3 . ( 7 + x ) = 88 - 82
3 . ( 7 + x ) = 88 - 64
3 . ( 7 + x ) = 24
7 + x = 24 : 3
7 + x = 8
x = 8 - 7
x = 1
Bài này có 2 trường hợp:
TH1: x-1 = 0 suy ra x = 1
TH2: x+2 = 0 suy ra x = -2
Vậy x = 1 hoặc -2
Nhớ k cho mình nhé!
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
A = (3+ 3^2 +3^3)+ (3^4 + 3^5+ 3^6)+(3^7+ 3^8 + 3^9)
= 39 + 3^3 (3+ 3^2+ 3^3) + 3^6(3+ 3^2+ 3^3)
= 39 + 3^3 .39 +3^6 .39
Vì 39 chia hết cho 13 nên A chia hết cho 13
\(\dfrac{x+5}{2017}+\dfrac{x+4}{2018}+\dfrac{x+3}{2019}=-3\\ \dfrac{x+5}{2017}+1+\dfrac{x+4}{2018}+1+\dfrac{x+3}{2019}=-3+3\\ \dfrac{x+5}{2017}+\dfrac{2017}{2017}+\dfrac{x+4}{2018}+\dfrac{2018}{2018}+\dfrac{x+3}{2019}+\dfrac{2019}{2019}=0\\ \dfrac{x+2022}{2017}+\dfrac{x+2022}{2018}+\dfrac{x+2022}{2019}=0\\ x+2022.\left(\dfrac{1}{2017}+\dfrac{1}{2018}+\dfrac{1}{2019}\right)=0\)
⇒x+2022=0 (vì \(\dfrac{1}{2017}+\dfrac{1}{2018}+\dfrac{1}{2019}\)\(\ne0\))
⇒x=0-2022
⇒x=-2022
a) \(\left(3.x-12\right).3=27\)
\(\Rightarrow3x-12=27:3\)
\(\Rightarrow3x-12=9\)
\(\Rightarrow3x=9+12\)
\(\Rightarrow3x=21\)
\(\Rightarrow x=21:3\)
\(\Rightarrow x=7\)
b) \(7.\left(4.x\right)=14\)
\(\Rightarrow4.x=14:7\)
\(\Rightarrow4.x=2\)
\(\Rightarrow x=2:4\)
\(\Rightarrow x=\frac{1}{2}\)
\(\left(3.x-12\right).3=27\) \(7.\left(4.x\right)=14\)
\(3.x-12=27:3\) \(4.x=14:7\)
\(3.x-12=9\) \(4.x=2\)
\(3.x=9+12\) \(x=2:4\)
\(3.x=21\) \(x=\frac{1}{2}.\)
\(x=21:3\)
\(x=7.\)
\(\left\{x^2-\left[6^2-\left(8^2-9.7\right)^3-7.5\right]^3-5.3\right\}^3=1\)
\(\Rightarrow\left\{x^2-\left(36-1^3-35\right)^3-15\right\}^3=1\)
\(\Rightarrow x^2-\left(0^3-15\right)^3=1\)
\(\Rightarrow x^2-\left(-3375\right)=1\)
\(\Rightarrow x^2=-3374\)
\(\Rightarrow x\in\varnothing\)
{ x2 - [ 62 - ( 82 - 9.7)3 - 7.5]3 - 5.3 }3 = 1
{ x2 + [ 36 - (64 - 63)3 - 35]3 - 15}3 = 1
[ x2 - ( 36 - 13 - 35 ) - 15 ]3 = 1
[ x2 - ( 36 - 1 - 35 ) - 15]3 = 1
[ x2 - ( 35 - 35 ) - 15]3 = 1
[ x2 - 0 - 15]3 = 1
( x2 - 15 )3 = 1
<=> ( x2 - 15)3 = 13
=> x2 - 15 = 1
<=> x2 = 16
=> x = 4