Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1down voteaccepted | Given a+ar+ar2=31a2+a2r2+a2r4=651 square the first equation From first equation Solving this quadra equation gives r=5 a=5r=1 So numbers are |
ta có \(\left(n^2-n+1\right)+\left(n^2+n+1\right)\\ =n^2-n+1+n^2+n+1\\ =2n^2+2\)
=>\(n\in\left\{n\in N\right\}112\le n\ge123\)
bài này mk k bt cách trình bày nhưng kết quả hình như là 15 đó bạn....
Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\)
=> \(\sqrt{x}\)+ 1 chia hết cho \(\sqrt{x}\)- 3
=> \(\sqrt{x}\)- 3 + 4 chia hết cho \(\sqrt{x}\) - 3
=> 4 chia hết cho \(\sqrt{x}\)- 3
=> \(\sqrt{x}\)- 3 thuộc Ư(4) = {1 ; -1 ; 2 ; -2 ; 4 ; -4}
Ta có bảng sau :
\(\sqrt{x}\)- 3 | 1 | -1 | 2 | -2 | 3 | -3 |
x | 2 | vô tỉ | vô tỉ | 1 | vô tỉ | 0 |
moi chu so cua mot so nguyen duong la 1 hoac 2 hoac 3.cho rang moi chu so 1,2 va3 say ra it nhat 2 lan
so nho nhat do la gi ma khong phai chia het cho 2 hoac 3
Dịch: Tìm số nguyên tố p sao cho tồn tại số nguyên dương a; b sao cho \(\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}\)
Vì \(\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}\) => (a2 + b2).p = a2.b2 (*) => a2b2 chia hết cho p => a2 chia hết cho p hoặc b2 chia hết cho p
+) Nếu a2 chia hết cho p ; p là số nguyên tố => a chia hết cho p => a2 chia hết cho p2 => a2 = k.p2 ( k nguyên dương)
Thay vào (*) ta được (a2 + b2) . p = k.p2.b2 => a2 + b2 = kp.b2 => a2 + b2 chia hết cho p => b2 chia hết cho p
=> b chia hết cho p
+) Khi đó, đặt a = m.p; b = n.p . thay vào \(\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}\) ta được: \(\frac{1}{p}=\frac{1}{m^2p^2}+\frac{1}{n^2p^2}\)
=> \(\frac{1}{p}=\frac{1}{p^2}\left(\frac{1}{m^2}+\frac{1}{n^2}\right)\)=> \(\frac{1}{m^2}+\frac{1}{n^2}=p\)
+) Vì p là số nguyên tố nên p > 2 . mà a; b nguyên dương nên m; n nguyên dương => m; n > 1 => \(\frac{1}{m^2}+\frac{1}{n^2}\le1+1=2\)
=> p = 2 và \(\frac{1}{m^2}+\frac{1}{n^2}=2\) => m = n = 1
Vậy p = 2 và a = b = 2
Lời giải bằng tiếng việt hay anh đây ?