K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

mik đag cần gấp các bn giải nhanh dùm mik nha

20 tháng 2 2020

\(\Leftrightarrow M=\left(\frac{x\left(x-2\right)}{2\left(x^2+4\right)}-\frac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right)\left(\frac{x^2-x-2}{x^2}\right)\)

\(\Leftrightarrow M=\frac{x\left(x-2\right)\left(2-x\right)-4x^2}{2\left(x^2+4\right)\left(2-x\right)}.\frac{x^2-x-2}{x^2}\)

\(\Leftrightarrow M=\frac{-x\left(x^2-4x+4\right)-4x^2}{2\left(x^2+4\right)\left(2-x\right)}.\frac{x\left(x-2\right)+\left(x-2\right)}{x^2}\)

\(\Leftrightarrow M=\frac{x\left(2-x\right)\left(x+2\right)}{2\left(x^2+4\right)\left(2-x\right)}.\frac{\left(x+1\right)\left(x-2\right)}{x^2}\)hình như sai sai đề

21 tháng 2 2020

Đề đúng rồi cậu làm sai á

6 tháng 12 2019

qqwweerrttyyuuiioopp

âsđffgghhjjkkll

zzxxccvvbbnnmm

6 tháng 3 2017

mơn bn nhìu na!!!

6 tháng 3 2017

uk, ko có chi. mà để cho mn tham khảo lun

20 tháng 12 2016

Ta có

\(1-\frac{2x}{2x+y}=1-\frac{2xy}{2xy+y^2}=\frac{y^2}{2xy+y^2}\left(1\right)\)

Ta lại có

\(\frac{y^2}{2xy+y^2}+\frac{2xy+y^2}{\left(x+y+z\right)^2}\ge\frac{2y}{x+y+z}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow1-\frac{2x}{2x+y}+\frac{2xy+y^2}{\left(x+y+z\right)^2}\ge\frac{2y}{x+y+z}\left(3\right)\)

Tương tự

\(1-\frac{2y}{2y+z}+\frac{2yz+z^2}{\left(x+y+z\right)^2}\ge\frac{2z}{\left(x+y+z\right)}\left(4\right)\)

\(1-\frac{2z}{2z+x}+\frac{2xz+x^2}{\left(x+y+z\right)^2}\ge\frac{2x}{x+y+z}\left(5\right)\)

Lấy (3) + (4) + (5) vế theo vế ta được

\(3-2M+\frac{2\left(xy+yz+zx\right)+x^2+y^2+z^2}{\left(x+y+z\right)^2}\ge\frac{2\left(x+y+z\right)}{x+y+z}\)

\(\Leftrightarrow3-2M+1\ge2\)

\(\Leftrightarrow M\le1\)

Dấu =  xảy ra khi \(x=y=z\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)=> \(\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

=> (x+y+z)(xy+yz+zx) = xyz

=> \(x^2y+xy^2+y^2z+yz^2+zx^2+z^2x+2xyz=0\)

=> (x+y)(y+z)(z+x) = 0

=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

TH1: x = -y

=> \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{\left(-y\right)^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{z^{2019}}\)

=> \(\frac{1}{x^{2019}+y^{2019}+z^{2019}}=\frac{1}{\left(-y\right)^{2019}+y^{2019}+z^{2019}}=\frac{1}{z^{2019}}\)

=> ĐPCM

Tương tự với TH2 và TH3