Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, bạn ơi mình biết làm hết r
B,cài này dễ lằm bạn nghĩ đi okeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
\(\left|x-7\right|+\left|3-x\right|=\dfrac{12}{\left|y+1\right|+3}\)
Ta có: \(\left\{{}\begin{matrix}\left|x-7\right|+\left|3-x\right|\ge\left|x-7+3-x\right|=4\\\dfrac{12}{\left|y+1\right|+3}\le\dfrac{12}{3}=4\end{matrix}\right.\)
Mà theo đề bài: \(\left|x-7\right|+\left|3-x\right|=\dfrac{12}{\left|y+1\right|+3}\)
\(\Rightarrow\left|x-7\right|+\left|3-x\right|=\dfrac{12}{\left|y+1\right|+3}=4\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}3\le x\le7\\y=-1\end{matrix}\right.\)
a, 2x+1=3x-5
1=x-5(giảm cả hai vế đi 2x)
1+5=x
x=6
b,2.(x.2)=5x-1/2
2.2.x=5x-1/2
4x=5x-1/2
4x+1/2=5x(giảm cả hai vế đi 4x)
1/2=x
c,lx-1l=1/2
lxl=1/2+1
lxl=1,5
x=1,5;-1,5
d,I2-3xI+1/2=2/3
l2-3xl=2/3-1/2
l2-3xl=1/3
l3xl=2-1/3
l3xl=5/3
lxl=5/3:3
lxl=5/9
x=5/9;-5/9
e,1/2x-2/3=1/4
1/2x=1/4+2/3
1/2x=11/12
x=11/12:1/2
x=11/6
j,3.(2x-1)=x-2
6x-3=x-2
6x-1=x
1=6x-x
1=5x
x=1/5
g,I1/2x-1I=1/3
l1/2xl=1/3+1
l1/2xl=4/3
lxl=4/3:1/2
lxl=8/3
x=8/3;-8/3
h,I3x-2I-1/2=1
l3x-2l=1+1/2
l3x-2l=3/2
l3xl=3/2+2
l3xl=7/2
lxl=7/2:3
lxl=7/6
x=7/6;-7/6
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2>-4\\3x-2< 4\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< 2\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x-1>5\\3x-1< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{4}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow\left[{}\begin{matrix}3x+1>x-2\\3x+1< -x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x>-3\\4x< 1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\)
a) Vì x-1#x
=>x-1=-x
=>x+x=1
=>x=1/2
Vậy x=1/2
b)TH1:x-1=x+3
=>x-x=1+3
=>0=2(vô lí)
TH2:x-1=-(x+3)
=>x-1=-x-3
=>x+x=1-3
=>2x=-2
=>x=-1
Vậy x=-1
Bài giải
a, \(\left|x+3\right|+\left|y-1\right|=0\)
Mà \(\hept{\begin{cases}\left|x+3\right|\ge0\forall x\\\left|y-1\right|\ge0\forall x\end{cases}}\Rightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(\left(x\text{ ; }y\right)=\left(-3\text{ ; }1\right)\)
b, \(\left|x+5\right|+\left|y+1\right|\le0\)
Mà \(\hept{\begin{cases}\left|x+5\right|\ge0\forall x\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\text{ }\left|x+5\right|+\left|y+1\right|=0\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|x+5\right|=0\\\left|y+1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)
Vậy \(\left(x\text{ ; }y\right)=\left(-5\text{ ; }-1\right)\)
#)Giải :
\(\left|2-x\right|+2=x\)
\(\Rightarrow\orbr{\begin{cases}\left|2-x\right|=x\\2=x\end{cases}\Rightarrow x=2}\)
Vậy \(x=2\)
\(\left|x-1\right|\left|-x-1\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left|x-1\right|=0\\\left|-x-1\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
Vậy \(x\in\left\{1;-1\right\}\)