Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
(h.10) Đường thẳng ∆ tiếp xúc với mặt cầu S(O;R) khi d = R.
Chọn D.
(h.8) Vì ∆ tiếp xúc với S(O;R) tại M nên OM ⊥ ∆ tại M.
Xét tam giác OMA vuông tại M, ta có:
AM 2 = OA 2 - OM 2 = d 2 - R 2
Chọn B.
Vì ∆ tiếp xúc với S(O;R) tại M nên OM⊥Δ tại M.
Xét tam giác OMA vuông tại M, ta có:
Chọn C.
*) Gọi I là hình chiếu của O lên (α) và M là điểm thuộc đường giao tuyến của (α) và mặt cầu S(O; R).
*) Xét tam giác OIM vuông tại I, ta có: OM = R và OI = d nên
Chọn C.
Gọi I là hình chiếu của O lên (α) và M là điểm thuộc đường giao tuyến của (α) và mặt cầu S(O; R).
Khi d < R thì mặt phẳng cắt mặt cầu (S) theo giao tuyến là đường tròn tâm I bán kính r = IM.
Xét tam giác OIM vuông tại I, ta có: OM = R và OI = d nên
Chọn B.
(h.2.58) Gọi I là hình chiếu của O lên ( α ) và M là điểm thuộc đường giao tuyến của ( α ) và mặt cầu S(O;R).
Tam giác OIM vuông tại I, ta có:
OM = R và OI = d
nên
Đáp án A
Từ vị trí tương đối của một đường thẳng và mặt cầu ta có đường thẳng d có điểm chung với mặt cầu (S) khi và chỉ khi đường thẳng d tiếp xúc hoặc cắt mặt cầu (S).
Chọn A.
Đường thẳng Δ tiếp xúc với S( O; R) khi d = R.