Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=2018-2\sqrt{2018}+1=\left(\sqrt{2018}-1\right)^2\Rightarrow\sqrt{x}=\sqrt{2018}-1\)
\(\Rightarrow P=\frac{\sqrt{2018}-1}{\sqrt{2018}-1+1}=\frac{\sqrt{2018}-1}{\sqrt{2018}}=\frac{2018-\sqrt{2018}}{2018}\)
Câu 1:
Áp dụng BĐT Cô-si:
\(A=\sqrt{\left(2-x\right)\left(2+x\right)}\le\frac{2-x+2+x}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow2-x=2+x\Leftrightarrow x=0\)
Câu 2:
\(B=\sqrt{-x^2+x+\frac{1}{4}}\)
\(B=\sqrt{-\left(x^2-x-\frac{1}{4}\right)}\)
\(B=\sqrt{-\left(x^2-x+\frac{1}{4}-\frac{1}{2}\right)}\)
\(B=\sqrt{-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\right]}\)
\(B=\sqrt{\frac{1}{2}-\left(x-\frac{1}{2}\right)^2}\le\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
ta có: \(2P=2x^2-2x\sqrt{y}+2x+2y-2\sqrt{y}+2\)
\(2P=\left(x^2-2x\sqrt{y}+y\right)+\left(x^2+2x+1\right)+\left(y-2\sqrt{y}+1\right)\)
\(2P=\left(x-\sqrt{y}\right)^2+\left(x+1\right)^2+\left(\sqrt{y}-1\right)^2\ge0\forall x,y\)
\(\Rightarrow P\ge0\forall x,y\)
dấu = xảy ra khi \(\left\{\begin{matrix}x=\sqrt{y}\\x=-1\\\sqrt{y}=1\end{matrix}\right.\)(có gì đó sai sai)
Lời giải:
Xét số hạng tổng quát:
\(\frac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Do đó:
\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2019}}-\frac{1}{\sqrt{2020}}\)
\(=1-\frac{1}{\sqrt{2020}}\)
\(P=\dfrac{x-1+4}{\sqrt{x}+1}=\sqrt{x}-1+\dfrac{4}{\sqrt{x}+1}\)
\(=\sqrt{x}+1+\dfrac{4}{\sqrt{x}+1}-2>=2\cdot2-2=2\)
Dấu = xảy ra khi x=1
$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$
$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$
$\geq \frac{-1}{8}$
Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$
$B=x+\sqrt{x}$
Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$
Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$
Thấy cái đề mà thấy khiếp ...
Ta có : \(x^2-xy+y^2=\frac{3}{4}\left(x^2-2xy+y^2\right)+\frac{1}{4}\left(x^2+2xy+y^2\right)\)
\(=\frac{3}{4}\left(x-y\right)^2+\frac{1}{4}\left(x+y\right)^2\ge\frac{1}{4}\left(x+y\right)^2\)
\(\Rightarrow\sqrt{x^2-xy+y^2}\ge\frac{x+y}{2}\)
Tương tự \(\sqrt{y^2-yz+z^2}\ge\frac{y+z}{2}\)
\(\sqrt{z^2-zx+x^2}\ge\frac{x+z}{2}\)
Do đó : \(2S\ge\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{x+z}{x+z+2y}\)
\(\Rightarrow2S+3\ge\left(1+\frac{x+y}{x+y+2z}\right)+\left(1+\frac{y+z}{y+z+2x}\right)+\left(1+\frac{x+z}{x+z+2y}\right)\)
\(=2\left(x+y+z\right)\left(\frac{1}{x+y+2z}+\frac{1}{y+z+2x}+\frac{1}{x+z+2y}\right)\)
\(\ge2\left(x+y+z\right).\frac{9}{4\left(x+y+z\right)}\)\(=\frac{9}{2}\)
(Áp dụng bđt Cô-si dạng engel cho 3 số)
\(\Rightarrow2S+3\ge\frac{9}{2}\)
\(\Rightarrow S\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
Vậy ..............
F=\(\sqrt{x^2+2019}\)
=>\(F^2=x^2+2019 =>x^2+2019\)≥2019
=> \(F^2 \)min=2019=>F min=\(\sqrt{2019}\)<=>x=0
G=\(\sqrt{x^2-x+1}\)=\(\sqrt{x^2-2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}}\)=\(\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\) \(\ge\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}\)
Dấu "=" xảy ra <=> x=\(\frac{1}{2}\)
Vậy minG=\(\frac{\sqrt{3}}{2}\) <=> x\(=\frac{1}{2}\)