Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-4x+1\)
\(A=\left(x^2-4x+4\right)-3\)
\(A=\left(x-2\right)^2-3\)
Vì \(\left(x-2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-2\right)^2-3\ge-3\) với mọi x
\(\Rightarrow Amin=-3\Leftrightarrow x=2\)
\(B=4x^2+4x+11\)
\(B=\left(4x^2+4x+1\right)+10\)
\(B=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x+1\right)^2+10\ge10\) với mọi x
\(\Rightarrow Bmin=10\Leftrightarrow x=-\dfrac{1}{2}\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(C=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(C=\left(x^2+5x\right)^2-36\)
Vì \(\left(x^2+5x\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
\(\Rightarrow Cmin=-36\Leftrightarrow x^2+5x=0\)
\(\Rightarrow x\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(D=5-8x-x^2\)
\(D=-\left(x^2+8x-5\right)\)
\(D=-\left(x^2+8x+16-16-5\right)\)
\(D=-\left(x^2+8x+16\right)+21\)
\(D=-\left(x+4\right)^2+21\)
Vì \(-\left(x+4\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x+4\right)^2+21\le21\) với mọi x
\(\Rightarrow Dmax=21\Leftrightarrow x=-4\)
\(E=4x-x^2+1\)
\(E=-\left(x^2-4x-1\right)\)
\(E=-\left(x^2-4x+4-4-1\right)\)
\(E=-\left(x^2-4x+4\right)+5\)
\(E=-\left(x-2\right)^2+5\)
Vì \(-\left(x-2\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-2\right)^2+5\le5\) với mọi x
\(\Rightarrow Emax=5\Leftrightarrow x=2\)
a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)
c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)
\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)
d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)
\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)
e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)
\(minE=-20\Leftrightarrow x=-3\)
f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)
\(A=x^2+3x+4=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)
Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)
Mấy câu còn lại làm tương tự nhé em^^
1,A=(x2-6x+9)+2
=(x-3)2+2
ta thấy (x-3)2>=0 với mọi x
=>(x-3)2+2>=2 với mọi x
hay A>=2
dấu "="xảy ra x-3=0<=>x=3
vậy MinA=2 khi x=3
ý b sai đầu bài bạn nhé
C=-(x2-5x)
=-(x2-5x+25/4)+25/4
=-(x-5/2)2+25/4
ta thấy -(x-5/2)2<=0 với mọi x
=>-(x-5/2)2+25/4 <=25/4 với mọi x
hay C<=25/4
dấu "=" xảy ra khi x-5/2=0<=>x=5/2
vậy MaxC=25/4 khi x=5/2
k mk nha
\(a,A=4-x^2+2x=4-\left(x^2-2x\right)=4-\left(x^2-2x+1-1\right)\)
\(=4-\left[\left(x-1\right)^2-1\right]=4-\left(x-1\right)^2+1=5-\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0=>-\left(x-1\right)^2\le0=>5-\left(x-1\right)^2\le5\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)
Vậy MaxA=5 khi x=1
\(b,B=4x-x^2=-x^2+4x=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)
\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4=4-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>4-\left(x-2\right)^2\le4\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)
Vậy MaxB=4 khi x=2
a) \(4-x^2+2x\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(\left(x-1\right)^2-5\right)\)
\(=5-\left(x-1\right)^2\ge5\)
MIn A = 5 khi \(x-1=0=>x=1\)
b) \(4x-x^2\)
\(=-\left(x^2-4x+4-4\right)\)
\(=>-\left(\left(x-2\right)^2-4\right)\)
\(=4-\left(x-2\right)\ge4\)
MIN B = 4 khi \(x-2=0=>x=2\)
Ủng hộ nha tối rồi
mình làm bài 2 trước nha:
a) y.(a-b)+a.(y-b)=a.y-b.y+a.y-b.y
=(a.y+a.y)-(b.y+b.y)
=2.a.y-2.b.y
=2.y.(a-b)
b)x2.(x+y)-y.(x2-y2)=x3+x2.y-x2y+y3=x3+y3
a) 5x2 - 8x + 5
= 5(x2 - 8/5.x + 1)
= 5(x2 -2.4/5.x + 16/25 + 1 - 16/25)
= 5[(x-4/5)2 + 9/25]
= 5.(x-4/5)2 + 9/5 >= 9/5. Dấu "=" xảy ra <=> x = 4/5. Vậy....
Còn lại tương tự nha bạn
TL:
a) \(5x^2-8x+5\)
\(=4x^2-8x+4+x^2+1=\left(2x-2\right)^2+x^2+1\)
Ta có : \(\left(2x-2\right)^2+x^2+1\ge1\forall x\in R\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-2\right)^2=0\) và \(x^2=0\)
\(\Leftrightarrow x=1\) và x=0
Vậy GTNN của BT =1 tại....
b) \(4x^2+6x+15=4x^2+6x+\frac{9}{4}+\frac{51}{4}\)
\(=\left(2x+\frac{3}{2}\right)^2+\frac{51}{4}\)
Ta có: \(\left(2x+\frac{3}{2}\right)^2+\frac{51}{4}\ge\frac{51}{4}\forall x\in R\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x+\frac{3}{2}\right)^2=0\Leftrightarrow2x=\frac{-3}{2}\Leftrightarrow x=\frac{-3}{4}\)
Vậy GTNN của BT =\(\frac{51}{4}\) tại \(x=\frac{-3}{4}\)
a/ \(A=5x-x^2=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)
vì: \(\left(x-\dfrac{5}{2}\right)^2\ge0\Rightarrow-\left(x-\dfrac{5}{2}\right)^2\le0\)
=> \(-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\ge\dfrac{25}{4}\)
''='' xảy ra khi x= 5/2
Vậy MaxA = \(\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)
b/ \(B=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
dấu ''='' xảy ra khi \(x=\dfrac{1}{2}\)
vậy \(max_A=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c/ \(C=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\)
vì: \(-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2+7\le7\)
''='' xảy ra khi x = 2
vậy maxA = 7 khi x = 2
\(a.A=5x-x^2\)
\(=-\left(x^2-5x\right)=-\left[\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\right]=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
\(\Rightarrow Max_A=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)
\(b.B=x-x^2=-\left(x^2-x\right)=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\right]=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(\Rightarrow Max_B=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
\(c.C=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7\le7\)
\(\Rightarrow Max_C=7\Leftrightarrow x=2\)
a) Ta có:
\(A=5x-x^2\)
\(=-\left(x^2-5x\right)\)
\(=-\left(x^2-5x\right)-6,25+6,25\)
\(=-\left(x^2-5x+6,25\right)+6,25\)
\(=-\left(x-2,5\right)^2+6,25\)
Ta lại có:
\(\left(x-2,5\right)^2\ge0\)
\(\Rightarrow-\left(x-2,5\right)^2\le0\)
\(\Rightarrow-\left(x-2,5\right)^2+6,25\le6,25\)
\(\Rightarrow A\le6,25\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2,5\right)^2=0\)
\(\Leftrightarrow x-2,5=0\)
\(\Leftrightarrow x=2,5\)
Vậy MaxA = 6,25 \(\Leftrightarrow x=2,5\)