K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

a) \(\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x+y\right)^2}{2}}=\dfrac{2\cdot\left(x+y\right)\cdot\sqrt{3}}{\left(x+y\right)\cdot\left(x-y\right)\cdot\sqrt{2}}=\dfrac{2\sqrt{3}}{\left(x-y\right)\cdot\sqrt{2}}=\dfrac{2\sqrt{6}}{2\left(x-y\right)}=\dfrac{\sqrt{6}}{x-y}\)

10 tháng 10 2018

b) \(\dfrac{2}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}=\dfrac{2}{2a-1}\cdot\sqrt{5a^2\left[\left(2a\right)^2-2\cdot2\cdot a+1^2\right]}=\dfrac{2}{2a-1}\cdot\sqrt{5a^2\left(2a-1\right)^2}=\dfrac{2}{2a-1}\cdot a\cdot\left(2a-1\right)\cdot\sqrt{5}=\dfrac{2a\left(2a-1\right)\sqrt{5}}{2a-1}=2a\sqrt{5}\)

31 tháng 3 2017

a) Vì nên . Do đó:

=

b)

Vì a>0,5 nên 2a-1>0. Do đó .

8 tháng 7 2018

\(a.A=\dfrac{2}{x^2-y^2}.\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}=\dfrac{2}{\left(x-y\right)\left(x+y\right)}.\dfrac{\left(x+y\right)\sqrt{3}}{2}=\dfrac{\sqrt{3}}{x-y}\) ( x # y )

\(b.\dfrac{1}{2x-1}.\sqrt{5a^4\left(1-4x+4a^2\right)}=\dfrac{1}{2a-1}.\left(2a-1\right)a^2\sqrt{5}=a^2\sqrt{5}\) ( a # \(\dfrac{1}{2}\) )

31 tháng 7 2018

BTVN nhiều nhỉ?

a,A=-1

b,B=2x-4y

c,C=2x^2-4

Bài 1: 

a: \(A=\left|2a-1\right|-2a\)

TH1: a>=1/2

A=2a-1-2a=-1

TH2: a<1/2

A=1-2a-2a=1-4a

b: \(B=x-2y-\left|x-2y\right|\)

TH1: x>=2y

A=x-2y-x+2y=0

TH2: x<2y

A=x-2y+x-2y=2x-4y

c: \(=x^2+\left|x^2-4\right|\)

TH1: x>=2 hoặc x<=-2

\(A=x^2+x^2-4=2x^2-4\)

TH2: -2<x<2

\(A=x^2+4-x^2=4\)

d: \(D=2x-1-\dfrac{\left|x-5\right|}{x-5}\)

TH1: x>5

\(D=2x-1-1=2x-2\)

TH2: x<5

D=2x-1+1=2x

Hỏi nhiều thế.

9 tháng 8 2018

Giải:

\(\dfrac{1}{2a-1}.\sqrt{5a^4.\left(1-4a+4a^2\right)}\)

\(=\dfrac{1}{2a-1}.\sqrt{5a^4}.\sqrt{1-4a+4a^2}\)

\(=\dfrac{1}{2a-1}.a^2\sqrt{5}.\sqrt{\left(1-2a\right)^2}\)

\(=\dfrac{1}{2a-1}.a^2\sqrt{5}.\left|1-2a\right|\)

\(=\dfrac{\left|2a-1\right|.a^2\sqrt{5}}{2a-1}\left(1\right)\)

Chắc đề thiếu điều kiện, mình cho thêm để ra kết quả đẹp

ĐK: \(a\ge1\Leftrightarrow2a\ge2\Leftrightarrow2a-1\ge1>0\)

\(\left(1\right)=\dfrac{\left(2a-1\right).a^2\sqrt{5}}{2a-1}\)

\(=a^2\sqrt{5}\)

Vậy ...

17 tháng 8 2017

a)\(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right)\div\sqrt{15}=\left(2\sqrt{3}+5\sqrt{3}+3\sqrt{3}\right)\div\sqrt{3}\sqrt{5}=10\sqrt{3}\div\sqrt{3}\sqrt{5}=\sqrt{2}\sqrt{5}\div\sqrt{5}=\sqrt{2}\)b)\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{4}\sqrt{9}\sqrt{7}-\sqrt{100}\sqrt{7}+\sqrt{16}\sqrt{9}\sqrt{7}-\sqrt{64}\sqrt{7}=2\cdot3\cdot\sqrt{7}-10\cdot\sqrt{7}+4\cdot3\cdot\sqrt{7}-8\sqrt{7}=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=0\)

c)\(\sqrt{27^2-23^2}+\sqrt{37^2-35^2}=\sqrt{\left(27-23\right)\left(27+23\right)}+\sqrt{\left(37-35\right)\left(37+35\right)}=\sqrt{4\cdot50}\cdot\sqrt{2\cdot72}=\sqrt{4\cdot50\cdot2\cdot72}=\sqrt{2^2\cdot2\cdot25\cdot2\cdot36\cdot2}=\sqrt{16}\cdot\sqrt{25}\cdot\sqrt{36}=4\cdot5\cdot6=120\)

d)\(\left(\sqrt{\dfrac{1}{7}}+\sqrt{\dfrac{16}{7}}+\sqrt{\dfrac{9}{7}}\right)\div\sqrt{7}=\left(\dfrac{1}{\sqrt{7}}+\dfrac{4}{\sqrt{7}}+\dfrac{3}{\sqrt{7}}\right)\cdot\dfrac{1}{\sqrt{7}}=\dfrac{7}{\sqrt{7}}\cdot\dfrac{1}{\sqrt{7}}=1\)

17 tháng 8 2017

\(A=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x^2++2xy+y^2\right)}{4}}=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x-y\right)^2}{4}}=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\sqrt{3}\left(x-y\right)}{2}=\dfrac{\sqrt{3}}{x+y}\)

\(B=\dfrac{1}{2a-1}\cdot\sqrt{5a^4\left(1-4a+4a^2\right)}=\dfrac{1}{2a-1}\cdot\sqrt{5a^4\left(2a-1\right)^2}=\dfrac{1}{2a-1}\cdot\sqrt{5}a^2\left(2a-1\right)=\sqrt{5}\cdot a^2\)

\(\frac{2}{2a-1}.\sqrt{5x^4\left(1-4a+4a^2\right)}\)

\(=\frac{2}{2a-1}.\sqrt{5x^4\left(2a-1\right)^2}\)

\(=\frac{2}{2a-1}.x^2.\left(2a-1\right).\sqrt{5}\)

\(=2\sqrt{5}x^2\)