K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 10 2021

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)  \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)

b. \(D=R\)

c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)

d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)

28 tháng 1 2023

f. 

\(x+1>0\) và \(7-2x>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x< \dfrac{7}{2}\end{matrix}\right.\)

\(\Rightarrow\) TXĐ: \(D=(-1;\dfrac{7}{2})\)

g.

\(x+1>0\) và \(x^2-4\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x\ne2\\x\ne-2\end{matrix}\right.\)

\(\Rightarrow\) TXĐ: \(D=\left(-1;+\infty\right)\backslash2\)

 

h: ĐKXĐ: |x+1|-|x-2|<>0

=>|x+1|<>|x-2|

=>x-2<>x+1 và x+1<>-x+2

=>2x<>1

=>x<>1/2

g: ĐKXĐ: x+1>0 và x+2>=0 và x^2-4<>0

=>x>-2 và x>-1 và x<>2; x<>-2

=>x>-1; x<>2

f: ĐKXĐ: x+1>=0 và 7-2x>=0 và x+1<>7-2x

=>3x<>6 và -1<=x<=7/2

=>x<>2 và -1<=x<=7/2

11 tháng 10 2021

a: TXĐ: D=R\{1}

b: TXĐ: D=[-2;2]\{0}

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Hàm \(y = 2{x^3} + 3x + 1\) là hàm đa thức nên có tập xác định \(D = \mathbb{R}\)

b) Biểu thức \(\frac{{x - 1}}{{{x^2} - 3x + 2}}\)có nghĩa khi \({x^2} - 3x + 2 \ne 0 \Leftrightarrow x \ne 1\)và \(x \ne 2\)

Vậy tập xác định của hàm số đã cho là \(D = \mathbb{R}/\left\{ {1;2} \right\}\)

c) Biểu thức \(\sqrt {x + 1}  + \sqrt {1 - x} \) có nghĩa khi \(x + 1 \ge 0\) và \(1 - x \ge 0\), tức là \( - 1 \le x \le 1\)

Vậy tập xác định của hàm số đã cho là \(D = \left[ { - 1;1} \right]\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

a. ĐKXĐ: $x^3-x\neq 0$

$\Leftrightarrow x(x-1)(x+1)\neq 0$

$\Leftrightarrow x\neq 0;\pm 1$

Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{0;\pm 1\right\}\)

b.

ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ |x|-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq \pm 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 1\end{matrix}\right.\)

TXĐ:

\([0;+\infty)\setminus \left\{1\right\}\)

c.

ĐKXĐ: \(x^2-1\neq 0\Leftrightarrow x\neq \pm 1\)

TXĐ: \(\mathbb{R}\setminus \left\{\pm 1\right\}\)

22 tháng 10 2021

TXĐ: \(D=[2;+\infty)\)

27 tháng 11 2023

\(y=\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\)

\(=\sqrt{x+2+2\sqrt{x+2}+1}+\sqrt{1-x^2+2\cdot\sqrt{1-x^2}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{x+2}+1\right)^2}+\sqrt{\left(\sqrt{1-x^2}+1\right)^2}\)

\(=\left|\sqrt{x+2}+1\right|+\left|\sqrt{1-x^2}+1\right|\)

ĐKXĐ: \(\left\{{}\begin{matrix}x+2>=0\\1-x^2>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-2\\x^2< =1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\-1< =x< =1\end{matrix}\right.\)

=>-1<=x<=1

TXĐ là D=[-1;1]