\(2x^2+2x+1=\sqrt{4x+1}\)

help me!!!

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

Đk: \(x\ge-\frac{1}{4}\)

pt <=> \(4x^2+4x+2=2\sqrt{4x-1}\)

<=> \(\left(2x+1\right)^2+1=2\sqrt{2\left(2x+1\right)-1}\)

Đặt \(\sqrt{2\left(2x+1\right)-1}=a\left(a\ge0\right)\)

Ta có hệ \(\left\{{}\begin{matrix}\left(2x+1\right)^2+1=2a\left(1\right)\\a^2+1=2\left(2x+1\right)\left(2\right)\end{matrix}\right.\)

Từ (1),(2)=> \(\left(2x+1\right)^2-a^2=2a-2\left(2x+1\right)\)

<=> \(\left(2x+1-a\right)\left(2x+1+a\right)=-2\left(2x+1-a\right)\)

<=> \(\left(2x+1-a\right)\left(2x+1+a\right)+2\left(2x+1-a\right)=0\)

<=> \(\left(2x+1-a\right)\left(2x+a+3\right)=0\)( *)

\(x\ge-\frac{1}{4}\)\(a\ge0\)=> \(2x+a+3\ge2.\frac{-1}{4}+0+3=\frac{5}{2}>0\)

(*) => \(2x+1-a=0\)

<=> \(2x+1=a\)

<=> \(2x+1=\sqrt{2\left(2x+1\right)-1}\)

=> \(4x^2+4x+1=2\left(2x+1\right)-1\)

<=> \(4x^2+4x+1-4x-1=0\)

<=> \(4x^2=0\)

<=> x=0 (t/m)

17 tháng 9 2019

\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)(ĐK: \(\sqrt{2x-5}\ge0\Leftrightarrow x\ge\frac{5}{2}\)

\(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)+2\sqrt{2x-5}.3+9}+\sqrt{\left(2x-5\right)-2\sqrt{2x-5}+1}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)

\(\Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\)(vì \(\sqrt{2x-5}\ge0\) nên \(\sqrt{2x-5}+3\ge3>0\))

-TH: \(\sqrt{2x-5}-1\ge0\Leftrightarrow\sqrt{2x-5}\ge1\Leftrightarrow2x-5\ge1\Leftrightarrow x\ge3\) thì ta được phương trình:

\(\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)

\(\Leftrightarrow2\sqrt{2x-5}=2\)

\(\Leftrightarrow\sqrt{2x-5}=1\)

\(\Leftrightarrow2x-5=1\)

\(\Leftrightarrow x=3\left(chọn\right)\)

-TH: \(\sqrt{2x-5}-1< 0\Leftrightarrow x< 3\) thì ta được phương trình:

\(\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\)

\(\Leftrightarrow4=4\)(luôn đúng với mọi \(\frac{5}{2}\le x< 3\))

Vậy nghiệm của phương trình là \(\frac{5}{2}\le x\le3\)

17 tháng 9 2019

2,7612

14 tháng 7 2019

\(\left\{{}\begin{matrix}\sqrt{x^2-4}\ge0\\\sqrt{x+2}\ge0\end{matrix}\right.\Rightarrow\sqrt{x^2-4}+\sqrt{x+2}\ge0mà:\sqrt{x^2-4}+\sqrt{x+2}=0\Rightarrow\left\{{}\begin{matrix}x^2-4=0\\x+2=0\end{matrix}\right.\Rightarrow x=-2\)

14 tháng 7 2019

Em ko chắc đâu nhất là cái đk ý.

Nhận xét x = -2 là một nghiệm do đó xét x khác -2:

ĐK: \(x\ge2\). Đặt \(\sqrt{x+2}=a\ge2;\sqrt{x-2}=b\ge0\) . Theo đề bài thì:

ab + a = 0 <=> a(b+1) = 0 <=> a = 0 (loại) hoặc b = - 1( loại)

Vậy 1 nghiệm x = - 2???

24 tháng 7 2019

Hỏi đáp Toán

24 tháng 7 2019

Nguyễn Thị Thu Sương: câu b tớ không biết làm rồi bucminhbucminh

27 tháng 7 2019

\(dkxd:x\ge-1;\sqrt{x-4\sqrt{x+1}+3}=5\Leftrightarrow x-4\sqrt{x+1}+3=25\Leftrightarrow x+1-4\sqrt{x+1}+2=25\Leftrightarrow\left(x+1\right)-4\sqrt{x+1}+4=27\Leftrightarrow\left(\sqrt{x+1}-2\right)^2=27\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=-\sqrt{27}+2\left(< 0loai\right)\\\sqrt{x+1}=\sqrt{27}+2\left(tm\right)\end{matrix}\right.\Leftrightarrow x+1=31+4\sqrt{27}\Leftrightarrow x=30+4\sqrt{27}\)

27 tháng 7 2019

\(\sqrt{x-4\sqrt{x+1}+3}=5\)

\(\Leftrightarrow x-4\sqrt{x+1}+3=25\)

\(\Leftrightarrow x-4\sqrt{x+1}-22=0\)

\(\Leftrightarrow x+1-4\sqrt{x+1}+4-27=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-2\right)^2=27=\left(\pm\sqrt{27}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}-2=\sqrt{27}\\\sqrt{x+1}-2=-\sqrt{27}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{27}+2\left(chon\right)\\\sqrt{x+1}=-\sqrt{27}-2\left(loai\right)\end{matrix}\right.\)

Xét \(\sqrt{x+1}=\sqrt{27}+2\)

\(\Leftrightarrow x+1=31+12\sqrt{3}\)

\(\Leftrightarrow x=30+12\sqrt{3}\)

Vậy...