Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x-3>0
=>x>3
\(\dfrac{2}{\sqrt{x-3}}=4\)
=>\(\sqrt{x-3}=\dfrac{1}{2}\)
=>x-3=1/4
=>x=13/4(nhận)
\(x=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{1}{8}\sqrt{2}\)
\(\Leftrightarrow x+\frac{\sqrt{2}}{8}=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\)
\(\Leftrightarrow\left(x+\frac{\sqrt{2}}{8}\right)^2=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)\)
\(\Leftrightarrow x^2+\frac{x\sqrt{2}}{4}+\frac{1}{32}=\frac{\sqrt{2}}{4}+\frac{1}{32}\)
\(\Leftrightarrow x^2+\frac{x\sqrt{2}}{4}-\frac{\sqrt{2}}{4}=0\)
\(\Leftrightarrow4x^2+x\sqrt{2}-\sqrt{2}=0\)(1)
\(\Leftrightarrow x\sqrt{2}=\sqrt{2}-4x^2\)
\(\Leftrightarrow x=1-2x^2\sqrt{2}\)
Thay vào M ta sẽ được
\(M=x^2+\sqrt{x^4+1-2x^2\sqrt{2}+1}\)
\(=x^2+\sqrt{\left(x^2-\sqrt{2}\right)^2}\)
\(=x^2+\left|x^2-\sqrt{2}\right|\)
Từ \(\left(1\right)\Rightarrow\sqrt{2}-x\sqrt{2}=4x^2\ge0\)
\(\Leftrightarrow\sqrt{2}\left(1-x\right)\ge0\)
\(\Leftrightarrow x\le1\)
\(\Leftrightarrow x^2\le1< \sqrt{2}\)
\(\Rightarrow\left|x^2-\sqrt{2}\right|=\sqrt{2}-x^2\)
Khi đó \(M=x^2+\left|x^2-\sqrt{2}\right|=x^2-\sqrt{2}+x^2=\sqrt{2}\)
|N|
Lời giải:
Đặt mẫu số của $B$ là $M$.
Từ \(2018x^3=2019y^3=2020z^3\)
\(\Rightarrow \sqrt[3]{2018}x=\sqrt[3]{2019}y=\sqrt[3]{2020}z=\frac{\sqrt[3]{2018}}{\frac{1}{x}}=\frac{\sqrt[3]{2019}}{\frac{1}{y}}=\frac{\sqrt[3]{2020}}{\frac{1}{z}}=\frac{\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020}}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\)
\(=\frac{\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020}}{8}=\frac{M}{8}\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{M}{8\sqrt[3]{2018}}\\ y=\frac{M}{8\sqrt[3]{2019}}\\ z=\frac{M}{8\sqrt[3]{2020}}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2018x^2=\frac{\sqrt[3]{2018}M^2}{64}\\ 2019y^2=\frac{\sqrt[3]{2019}M^2}{64}\\ 2020z^2=\frac{\sqrt[3]{2020}M^2}{64}\end{matrix}\right.\)
\(\Rightarrow 2018x^2+2019y^2+2020z^2=\frac{M^2(\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020})}{64}=\frac{M^3}{64}\)
\(\Rightarrow B=\frac{\sqrt[3]{\frac{M^3}{64}}}{M}=\frac{M}{4M}=\frac{1}{4}\)
Lời giải:
Điều kiện đề bài:
\(\Rightarrow \left\{\begin{matrix} x^2+y^2-x\sqrt{x}-y\sqrt{y}=0\\ x^2\sqrt{x}+y^2\sqrt{y}-x^2-y^2=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\sqrt{x}(\sqrt{x}-1)+y\sqrt{y}(\sqrt{y}-1)=0\\ x^2(\sqrt{x}-1)+y^2(\sqrt{y}-1)=0\end{matrix}\right.\)
\(\Rightarrow (x^2-x\sqrt{x})(\sqrt{x}-1)+(y^2-y\sqrt{y})(\sqrt{y}-1)=0\) (lấy vế 2 trừ vế 1)
\(\Leftrightarrow x\sqrt{x}(\sqrt{x}-1)^2+y\sqrt{y}(\sqrt{y}-1)^2=0\)
Vì mỗi số hạng trên đều không âm với mọi $x,y>0$ nên để tổng của chúng bằng $0$ thì:
\(x\sqrt{x}(\sqrt{x}-1)^2=y\sqrt{y}(\sqrt{y}-1)^2=0\)
\(\Rightarrow x=y=1\Rightarrow x+y=2\)
điều kiện : \(x>0\), \(x\) ≠ 1.
rút gọn biểu thức ta được P = \(\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
ta có : Px + (P \(-\)1)\(\sqrt{x}\)+P\(-\)2 = 0, ta coi đây là ptr bậc hai của \(\sqrt{x}\).
nếu P = 0⇒\(-\sqrt{x}-2\) = 0 vô lí, suy ra P ≠ 0 nên để tồn tại x thì ptr trên có \(\left(P-1\right)^2-4P\left(P-2\right)\) ≥ 0
⇔ \(-3P^2+6P+1\) ≥ 0
⇔ \(P^2-2P+1\) ≤ \(\frac{4}{3}\)
⇔ \(\left(P-1\right)^2\) ≤ \(\frac{4}{3}\)
do P nguyên nên \(\left(P-1\right)^2\) bằng 0 hoặc 1
+) nếu \(\left(P-1\right)^2\) = 0 ⇔ P = 1 ⇔ x = 1 ( không thỏa mãn )
+) nếu \(\left(P-1\right)^2\) = 1 ⇔ \(\begin{matrix}\text{[}&P=2\\\text{[}&P=0\end{matrix}\) ⇒ P = 2
⇔ \(2x+\sqrt{x}=0\) ⇔ x = 0 ( ko thỏa mãn )
vậy không có gtri nào của x thỏa mãn.
ĐKXĐ: ...
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{x\left(\sqrt{x}+1\right)}{\left(x+2\sqrt{x}\right)}=\frac{x}{\sqrt{x}-1}\)
\(x=\frac{2}{2-\sqrt{3}}=\frac{4}{4-2\sqrt{3}}=\left(\frac{2}{\sqrt{3}-1}\right)^2\)
\(\Rightarrow P=\frac{\frac{2}{2-\sqrt{3}}}{\frac{2}{\sqrt{3}-1}-1}=\frac{\frac{2}{2-\sqrt{3}}}{\frac{3-\sqrt{3}}{\sqrt{3}-1}}=\frac{2}{2\sqrt{3}-3}\)
\(\sqrt{P}\) xác định khi \(x>1\)
Khi đó: \(\sqrt{P}=\sqrt{\frac{x}{\sqrt{x}-1}}=\sqrt{\frac{x}{\sqrt{x}-1}-4+4}=\sqrt{\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge2\)
\(\sqrt{P}_{min}=2\) khi \(x=4\)
\(x=2018-2\sqrt{2018}+1=\left(\sqrt{2018}-1\right)^2\Rightarrow\sqrt{x}=\sqrt{2018}-1\)
\(\Rightarrow P=\frac{\sqrt{2018}-1}{\sqrt{2018}-1+1}=\frac{\sqrt{2018}-1}{\sqrt{2018}}=\frac{2018-\sqrt{2018}}{2018}\)