K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 11 2019

\(a=m^2-2m+3=\left(m-1\right)^2+2>0\) \(\forall m\)

\(\Rightarrow\) Hàm số luôn đồng biến

Để (d) qua A \(\Leftrightarrow\left(m^2-2m+3\right).2-4=8\)

\(\Leftrightarrow m^2-2m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=3\end{matrix}\right.\)

Để (d) song song với (d')

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m+3=3\\m-4\ne-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\\m\ne0\end{matrix}\right.\) \(\Rightarrow m=3\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:

a. Để hàm số nghịch biến trên R thì:

$a+2<0$

$\Leftrightarrow a< -2$

b.

Để $(d)$ đi qua $M(-1;-4)$ thì:

$y_M=(a+2)x_M-a+1$

$\Leftrightarrow -4=(a+2)(-1)-a+1$

$\Leftrightarrow a=\frac{3}{2}$

3 tháng 12 2017

a/ Để 2 đường thẳng cắt  thì : (2-m) \(\ne\)(m+4) \(\Leftrightarrow-m-m\ne4-2\)

                                                                              \(\Leftrightarrow-2m\ne2\)

                                                                               \(\Leftrightarrow m\ne-2\)

b/ Để hai đường thẳng song song thì: \(\hept{\begin{cases}2-m=m+4\\4\ne2m\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}m=-2\\m\ne2\end{cases}}\)

3 tháng 12 2017

Vẽ đồ thị các hàm số sau trên cùng 1 mặt phẳng tọa độ y=2x+4 và y=-x-1 

23 tháng 12 2018

Dăm ba cái bài này . Ui người ta nói nó dễ !!!

a  ) song song \(\Leftrightarrow\hept{\begin{cases}a=a^,\\b\ne b^,\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=\frac{1}{2}\\m\ne-\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}m=\frac{3}{2}\\m\ne-\frac{1}{2}\end{cases}}\)

b ) Vì ( 1 ) cắt trục hoành tại điểm A có hoành độ bằng 2 nên ta có : x = 2 ; y = 0 

=> điểm A( 2 ; 0 ) 

Thay A vào ( 1 ) ta được : 0 = ( m - 1 ) . 2 + m 

                                  <=> 0 = 2m - 2 +m 

                                  <=> 0 + 2 = 2m + m

                                  <=> 2       = 3m

                                  <=> m     = 2/3 

c ) 

Gọi \(B\left(x_B;y_B\right)\) là điểm tiếp xúc của ( O ) và ( 1 ) 

Ta có bán kính của ( O ) là \(\sqrt{2}\) nên \(x_B=0;y_B=\sqrt{2}\)

=> \(B\left(0;\sqrt{2}\right)\)

Thay B vào ( 1 ) ta được : \(\sqrt{2}=\left(m-1\right).0+m\)

                           \(\Rightarrow m=\sqrt{2}\)