Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 : Hình tự vẽ
a ) Ta có : BM = AB ( theo đề bài )
=> Tam giác AMB cân tại B
b ) Do tam giác ABC vuông cân tại A => AB = AC
mà CN = AB => CN cũng = AC
=> Tam giác ANC cân tại C
c ) Tam giác j cân tại A ???
Bài 2 : Hình bn tự vẽ nhé
a ) AH \(\perp\)BC => \(\Delta AHB\)và \(\Delta AHC\)là hai tam giác vuông
Do tam giác ABC cân tại A => AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
Xét hai tam giác vuông : \(\Delta AHB\)và \(\Delta AHC\)có :
AB = AC ( cmt )
\(\widehat{ABC}=\widehat{ACB}\)( cmt )
nên tam giác AHB = tam giác AHC ( cạnh huyền - góc nhọn )
b ) Do tam giác AHB = tam giác AHC => HB = HC ( hai cạnh tương ứng )
c ) Do tam giác AHB = tam giác AHC => \(\widehat{BAH}=\widehat{CAH}\)
=> AH là tia p/g của \(\widehat{BAC}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
tự vẽ hình
a, Xét tam giác OKM và tam giác OHM có
góc OKN= góc OHM=90độ (vì NK vuông góc với OM;MHvuông góc với ON)
OM=ON(gt)
chung gócO
Suy ra : Tam giác OKM= Tam giác OHM
Suy ra:ĐPCM
b,Theo câu a tam giác OKM= Tam giác OHM
Suy ra : OH=OK(Hai cạnh tương ứng)
Suy ra :ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
Xét tam giác HAI vuông tại H và tam giác KAI vuông tại K:
A1 = A2 (AI là tia phân giác của BAC)
AI là cạnh chung
=> Tam giác HAI = Tam giác KAI (cạnh huyền - góc nhọn)
=> IH = IK (2 cạnh tương ứng)
=> Tam giác IHK cân tại I
b.
AH = AK (Tam giác HAI = Tam giác KAI)
=> Tam giác AHK cân tại A
=> AHK = \(\frac{180-HAK}{2}\)
mà ABC = \(\frac{180-BAC}{2}\) (Tam giác ABC cân tại A)
=> AHK = ABC mà 2 góc nằm ở vị trí đồng vị
=> HK // BC
c. Gọi M là giao điểm của AI và HK
Xét tam giác AHM và tam giác AKM có:
AH = AK (Tam giác AHI = Tam giác AKI)
A1 = A2 (AI là tia phân giác của BAC)
AM là cạnh chung
=> Tam giác AHM = Tam giác AKM (c.g.c)
=> AMH = AMK (2 góc tương ứng)
mà AMH + AMK = 180 (2 góc kề bù)
=> AMH = AMK = 90
=> AI _I_ HK
![](https://rs.olm.vn/images/avt/0.png?1311)
a)tự cm tam giác AHI=AKI=> HI=KI=>TAM GIÁC IHK CÂN
b) dễ wa bạn có thể cm
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tgAHB và tg AHC có:
+AB=AC(gt)
+AH là cạnh chung
+góc BHA=góc CHA
=>tgAHB=tg AHC(c-g-c)
=>HB=HC,góc BAH=góc CAH
Các cặp tg vuông là:
BEH-HFC,VÌ HE và HC là 2 đường cao=>tgBEH và tgCFH là cặp tg vuông(g-c-g)
Gọi k là giao điểm của HA và EF,=>tgEHF là tg cân=>góc HEF=góc EFH=>EK=EF
=>MÀ AB=AC,EB=FC=>AE=AF=>Tg AEF là tg cân=>AK cũng là đường CAO
=> tgAEK và tg AFK là cặp tg vuông(c-g-c)
=>tg EKH Và tg EFH là cặp tg vuông(g-c-g)
=>tg AEH và tg AFH là cặp tg vuông(c-g-c)
Và cuối cùng là tg ABH và tg ACH(c-g-c)
+vì EF vuông góc với KH(cmt)và BC cũng vuông góc với KH=>EF//BC(ĐPCM)
a, Xét tam giác AHB và tam giác AHC có:
AH chung
AB=AC (tam giác ABC cân tại A)
Vậy tam giác AHB= tam giác AHC (cạnh huyền-góc nhọn)
b,từ CMT: ta có:
HB=HC
Góc BAH= góc CAH
c,tam giác AHF=tam giác AHE(cạnh huyền AH chung,góc nhọn BAH =góc nhọn CAH)
tam giác AHC= tam giác AHB(cạnh huyền AH chung, góc nhọn BAH =góc nhọn CAH)
tam giác BEH =tam giác HFC(cạnh huyền BH=CH, góc nhọn EBH = góc nhọn FCH)
d,sorry bạn, câu này mik ko làm đc
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Xét \(\Delta ABH\) và \(\Delta MBH\) có:
BA=BM do gt
\(\widehat{BAH}=\widehat{BMH}=90^0\)
BH là cạnh huyền chung
Do đó: \(\Delta ABH=\Delta MBH\) theo trường hợp ch-cgv