Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm sao tìm đc:
|3x + 9 - 17| > 0
nên |3x + 9 - 17| ko thể bằng -50
=> x thuộc rỗng
(x−3)(x2+3x+9)−(3x−17)=x3−12(x−3)(x2+3x+9)−(3x−17)=x3−12
⇒x(x2+3x+9)−3(x2+3x+9)−3x+17=x3−12⇒x(x2+3x+9)−3(x2+3x+9)−3x+17=x3−12
⇒x3+3x2+9x−3x2−9x−27−3x+17=x3−12⇒x3+3x2+9x−3x2−9x−27−3x+17=x3−12
⇒x3+(3x2−3x2)+(9x−9x)−3x−10=x3+12⇒x3+(3x2−3x2)+(9x−9x)−3x−10=x3+12
⇒x3−3x−10=x3+12⇒x3−3x−10=x3+12
⇒x3−3x−10−12=x3⇒x3−3x−10−12=x3
⇒x3−3x−22=x3⇒x3−3x−22=x3
⇒3x−22=0⇒3x−22=0
⇒3x=22⇒x=223
(x−3)(x^2+3x+9)−(3x−17)=x^3−12
⇔x^3−27−3x+17=x^3−12
⇔−10−3x=−12
⇔3x=2
⇔x=2/3
Vậy...
\(\left(\dfrac{1}{3}\right)^{50}.\left(-9\right)^{25}-\dfrac{2}{3}:4\)
=\(\left(\dfrac{1}{9}\right)^{25}.\left(-9\right)^{25}-\dfrac{1}{6}\)
=\(\left[\dfrac{1}{9}.\left(-9\right)\right]^{25}-\dfrac{1}{6}\)
= \(\left(-1\right)^{25}-\dfrac{1}{6}\)
= \(-1-\dfrac{1}{6}=\dfrac{-7}{6}\)
\(\left(\dfrac{1}{3}\right)^{50}\cdot\left(-9\right)^{25}-\dfrac{2}{3}:4\)
\(=\left[\left(\dfrac{1}{3}\right)^2\right]^{25}\cdot\left(-9\right)^{25}-\dfrac{1}{6}\)
\(=\left(\dfrac{1}{9}\right)^{25}\cdot\left(-9\right)^{25}-\dfrac{1}{6}\)
\(=\left[\dfrac{1}{9}\cdot\left(-9\right)\right]^{25}-\dfrac{1}{6}\)
\(=\left(-1\right)^{25}-\dfrac{1}{6}=-1-\dfrac{1}{6}=-\dfrac{7}{6}\)
<=> x - 3x + 17 = 9
<=> - 2x + 17 = 9
<=> - 2x = 9 - 17
<=> - 2x = - 8
=> x = - 8 : ( - 2 )
=> x = 4
Vậy x = 4
\(D=\dfrac{9x^8y^6\cdot\dfrac{1}{6}x^2y+\left(-16\right)}{15x^2y^2\cdot0.4\cdot ax^2y^2z^2}=\dfrac{\dfrac{3}{2}x^{10}y^7-16}{6ax^4y^4z^2}\)
làm sao tìm đc:
|3x + 9 - 17| > 0
nên |3x + 9 - 17| ko thể bằng -50
=> x thuộc rỗng