Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = xy + y - 2x - 2
= y( x + 1 ) - 2( x + 1 )
= ( x + 1 )( y - 2 )
B = x2 - 3x + xy - 3y
= x( x - 3 ) + y( x - 3 )
= ( x - 3 )( x + y )
C = 3x2 - 3xy - 5x + 5y
= 3x( x - y ) - 5( x - y )
= ( x - y )( 3x - 5 )
D = xy + 1 + x + y
= y( x + 1 ) + ( x + 1 )
= ( x + 1 )( y + 1 )
E = ax - bx + ab - x2
= ( ax - x2 ) + ( ab - bx )
= x( a - x ) + b( a - x )
= ( a - x )( x + b )
F = x2 + ab + ax + bx
= ( ax + x2 ) + ( ab + bx )
= x( a + x ) + b( a + x )
= ( a + x )( x + b )
G = a3 - a2x - ay + xy
= a2( a - x ) - y( a - x )
= ( a - x )( a2 - y )
Bonus : = ( a - x )[ a2 - ( √y )2 ]
= ( a - x )( a - √y )( a + √y )
H = 2xy + 3z + 6y + xz
= ( 6y + 2xy ) + ( 3z + xz )
= 2y( 3 + x ) + z( 3 + x )
= ( 3 + x )( 2y + z )
A = xy + y - 2x - 2 = y(x + 1) - 2(x + 1) = (y - 2)(x + !1
B = x2 - 3x + xy - 3y = x(x - 3) + y(x - 3) = (x + y)(x - 3)
C = 3x2 - 3xy - 5x + 5y = 3x(x - y) - 5(x - y) = (3x - 5)(x - y)
D = xy + 1 + x + y = xy + x + y + 1 = x(y + 1) + (y + 1) = (x + 1)(y + 1)
E = ax - bx + ab - x2 = ax - x2 + ab - bx = a(a - x) - b(a - x) = (a - b)(a - x)
F = x2 + ab + ax + bx = ab + ax + bx + x2 = a(b + x) + x(b + x) = (a + x)(b + x)
G = a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)
H = 2xy + 3z + 6y + xz = 2xy + 6y + 3z + xz = 2y(x + 3) + z(x + 3) = (2y + z)(x + 3)
\(H=x^2+xy+y^2-3x-3y\)
\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-3\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-3\)
\(=\left[\left(x-1\right)^2+2.\frac{1}{2}.\left(x-1\right)\left(y-1\right)+\frac{1}{4}\left(y-1\right)^2\right]+\frac{3}{4}\left(y-1\right)^2-3\)
\(=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-3\)
Vì \(\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2\ge0\forall x;y\)
\(\Rightarrow H=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-3\ge-3\forall x;y\) có GTNN là - 3
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2=0\\\frac{3}{4}\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy \(H_{min}=-3\) tại \(x=1;y=1\)
a) \(x^2-3x+xy-3y=\left(x^2-3x\right)+\left(xy-3y\right)\)
\(=x\left(x-3\right)+y\left(x-3\right)=\left(x+y\right)\left(x-3\right)\)
b) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
c)\(x^3+2x^2y+xy^2-9x=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left[\left(x+y\right)^2-3^2\right]=x\left(x+y-3\right)\left(x+y+3\right)\)
a) 2x2.(5x3-4x2y-7xy +1) =10x5-8x4y-14x3y+2x2 b) (5x -2y)(x2 -xy +1) =5x3-5x2y+5x-2x2y+2xy2-2y =5x3-7x2y+2xy2+5x-2y c) (\(\dfrac{1}{2}\)x -1)(2x -3) =x2-\(\dfrac{3}{2}\)x-2x+3 =x2-\(\dfrac{7}{2}\)x+3 d) (x +3y)2 =x2+6xy+9y2 e) (3x -2y)2 =9x2-12xy+4y2 g) (\(\dfrac{1}{4}\)x - 3y)(\(\dfrac{1}{4}\)x +3y) =\(\dfrac{1}{16}\)x2-9y2 f) (2x +3)3 =8x3+36x2+54x+27 h) (3 -2y)3 =27-54y+36y2-8y3
\(1,8x^3+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\\ 3,x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)\\ =\left(x-y\right)\left(x+y\right)-\left(x+y\right)\\ =\left(x+y\right)\left(x-y-1\right)\\ 4,x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2\\ =\left(x-y-z\right)\left(x-y+z\right)\\ 5,x^2-3x+xy-3y=x\left(x-3\right)+y\left(x-3\right)\\ =\left(x-3\right)\left(x+y\right)\)
\(a,8x^3+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)
b, đề thiếu nhé
\(c,x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
\(d,x^2-2xy+y^2-z^2=\left(x+y\right)^2-z^2\)
\(=\left(x+y-z\right)\left(x+y+z\right)\)
\(e,x^2-3x+xy-3y=\left(x^2-3x\right)+\left(xy-3y\right)\)
\(=x\left(x-3\right)+y\left(x-3\right)\)
\(=\left(x+y\right)\left(x-3\right)\)
câu g hình như sai đề rồi đó ❤ NTN ❤
Khôi Bùi Ông hok rồi ông giúp tui câu b và g cái coi
Gọi \(A=x^2+y^2+xy-3x-3y-3\)
\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-6\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-6\)
\(=\left(x-1\right)^2+2\left(x-1\right)\frac{1}{2}\left(y-1\right)+\frac{1}{4}\left(y-1\right)^2+\frac{3}{4}\left(y-1\right)^2-6\)
\(=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-6\ge-6\)Có GTNN là -6
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2=0\\\frac{3}{4}\left(y-1\right)^2=0\end{cases}\Rightarrow x=y=1}\)
Vậy GTNN của A là -6 tại x = y = 1
A= x2+y2+xy-3x-3y-3
\(=\left[x-1+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-6\ge-6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1+\frac{1}{2}\left(y-1\right)=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy.............
Câu hỏi đâu rồi hả bn
1 bài toán không thể không có câu hỏi
đề là : Tìm gtnn nha
\(H=x^2+xy+y^2-3x-3y+3\)
\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+xy-x-y+1\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)\)
\(=\left[\left(x-1\right)^2+2\left(x-1\right).\frac{1}{2}.\left(y-1\right)+\frac{1}{4}\left(y-1\right)^2\right]+\frac{3}{4}\left(y-1\right)^2\)
\(=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2\text{≥}0\) với mọi x, có GTNN là 0
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)