K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(x^3+xy^2-y^2-1\)

\(=\left(x^3-1\right)+y^2\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+y^2\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1+y^2\right)\)

b: \(12x^2+4x-6xy-2y\)

\(=4x\left(3x+1\right)-2y\left(3x+1\right)\)

\(=\left(3x+1\right)\left(4x-2y\right)=2\left(2x-y\right)\left(3x+1\right)\)

20 tháng 10 2021

\(A=16x^2-y^2-16x^2+8x=8x-y^2\\ A=8\cdot3-\left(-1\right)^2=24-1=23\\ B=64x^3-80x-64x^3-1=-80x-1\\ B=-80\cdot\dfrac{1}{5}-1=-16-1=-17\)

X³-4x+x-2=x×(x²-4)+(x-2) =x×(x-2)×(x+2)+(x-2) =(x-2)×(x×(x+2)+1)
25 tháng 7 2019

1.Phân tích thành nhân tử ( phương pháp nhóm nhiều hạng tử )

a. x^3 + 2x^2 - xy - 2y

\(=x^2\left(x+2\right)-y\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-y\right)\)

b. xy - 5x + 3y^2 - 15y

\(=xy+3y^2-5x-15y\)

\(=y\left(x+3y\right)-5\left(x+3y\right)\)

\(=\left(x+3y\right)\left(y-5\right)\)

c.2xy + 6x + y^2 + 3y

\(=2xy+y^2+6x+3y\)

\(=y\left(2x+y\right)+3\left(2x+y\right)\)

\(=\left(2x+y\right)\left(y+3\right)\)

25 tháng 7 2019

a) \(x^3+2x^2-xy-2y\)

\(=\left(x^3-xy\right)+\left(2x^2-2y\right)\)

\(=x\left(x^2-y\right)+2\left(x^2-y\right)\)

\(=\left(x+2\right)\left(x^2-y\right)\)

\(=\left(x+2\right)\left(x+\sqrt{y}\right)\left(x-\sqrt{y}\right)\)

2 tháng 7 2016

a) a3 - a2x - ay + xy

 = (a3 - a2x) - (ay - xy) 

= a2(a - x) - y(a - x) 

= (a - x)(a2 - y)

b,c tương tự mà hình như b đề sai

14 tháng 9 2016

x2 - x - y2 - y

= (x - y)(x + y) - (x + y)

= (x + y)(x - y - 1)

***

9x2 + y2 - 16z2 + 6xy

= (3x + y)2 - (4z)2

= (3x + y - 4z)(3x + y + 4z)

***

a3 - a2x - ay + xy

= a2(a - x) - y(a - x)

= (a - x)(a2 - y)

***

2x2 - 8y2 + 3x + 6y

= 2(x2 - 4y2) + 3(x + 2y)

= 2(x - 2y)(x + 2y) + 3(x + 2y)

= (x + 2y)(2x - 4y + 3)

***

xy(x + y) + yz(y + z) + xz(x + z) + 2xyz

= xy(x + y + z) + yz(x + y + z) + xz(x + z)

= y(x + y + z)(x + z) + xz(x + z)

= (x + z)(xy + y2 + yz + xz)

= (x + z)[y(x + y) + z(x + y)]

= (x + z)(x + y)(y + z) 

5 tháng 10 2020

a) 5x2 - 5xy + 7y - 7x = ( 5x2 - 5xy ) - ( 7x - 7y ) = 5x( x - y ) - 7( x - y ) = ( x - y )( 5x - 7 )

b) x2 - y2 + 2x + 1 = ( x2 + 2x + 1 ) - y2 = ( x + 1 )2 - y2 = ( x - y + 1 )( x + y + 1 )

c) 3x2 + 6xy + 3y2 - 3z2 = 3( x2 + 2xy + y2 - z2 ) = 3[ ( x2 + 2xy + y2 ) - z2 ] = 3[ ( x + y )2 - z2 ] = 3( x + y - z )( x + y + z )

d) ab( x2 + y2 ) + xy( a2 + b2 ) = abx2 + aby2 + a2xy + b2xy

                                                = ( a2xy + abx2 ) + ( aby2 + b2xy )

                                                = ax( ay + bx ) + by( ay + bx )

                                                = ( ay + bx )( ax + by )

17 tháng 10 2018

d) \(x^2-y^2-2x+2y\)

\(=\left(x^2-2x+1\right)-\left(y^2-2y+1\right)\)

\(=\left(x-1\right)^2-\left(y-1\right)^2\)

\(=\left(x-1-y+1\right)\left(x-1+y-1\right)\)

\(=\left(x-y\right)\left(x+y-2\right)\)

17 tháng 10 2018

\(4xy^2-12x^2y+8xy\)

\(=4xy\left(y-3x+2\right)\)

\(3x^2-6xy+3y^2-12z^2\)

\(=3.\left(x^2-2xy+y^2-4z^2\right)\)

\(=3.\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=3.\left(x-y-2z\right)\left(x-y+2z\right)\)

\(x^4y^4+4=\left[\left(x^2y^2\right)^2+2..x^2y^2.2+2^2\right]-\left(2xy\right)^2\)

\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)

10 tháng 8 2023

\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)

\(=4a^2b^2-2ab\left(a^2+b^2-c^2\right)+2ab\left(a^2+b^2-c^2\right)-\left(a^2+b^2-c^2\right)^2\)

\(=2ab\left[2ab-\left(a^2+b^2-c^2\right)\right]+\left(a^2+b^2-c^2\right)\left[2ab-\left(a^2+b^2-c^2\right)\right]\)

\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

\(=\left(a^2+ab+ab+b^2-c^2\right)\left[c^2-\left(a^2-ab-ab+b^2\right)\right]\)

\(=\left[a\left(a+b\right)+b\left(a+b\right)-c^2\right]\left[c^2-\left(a\left(a-b\right)-b\left(a-b\right)\right)\right]\)

\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)

\(=\left[\left(a+b\right)^2-c\left(a+b\right)+c\left(a+b\right)-c^2\right]\left[c^2+c\left(a-b\right)-c\left(a-b\right)-\left(a-b\right)^2\right]\)

\(=\left[\left(a+b\right)\left(a+b-c\right)+c\left(a+b-c\right)\right]\left[c\left(c+a-b\right)-\left(a-b\right)\left(c+a-b\right)\right]\)

\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)