![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Phân tích đa thức bậc 2: \(ax^2+bx+c\)\(\left(a\ne0\right)\)
Nếu \(a+b+c=0\)\(\Rightarrow b=-\left(a+c\right)\)
Nếu \(a-b+c=0\)\(\Rightarrow b=a+c\)
Với \(b^2\ge4ac\)thì ta tách thành \(b=b_1+b_2\)và \(b_1.b_2=ac\)
Dùng máy tính dự đoán nghiệm:
- Viết đa thức gồm cả biến x vào máy tính
- Bấm phím " calc "
- Sau đó nhập giá trị của x rồi bấm " = "
- Nếu kết quả bằng 0 thì biến x đã nhập là nghiệm
giải giúp mình bài nay bằng máy tính casio hộ mình nha(nhớ giải chi tiết hộ mình)
tính: \(1023456^3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lương Tịch bn tham khảo nha
I > Phương pháp dự đoán và quy nạp :
Trong một số trường hợp khi gặp bài toán tính tổng hữu hạn
Sn = a1 + a2 + .... an (1)
Bằng cách nào đó ta biết được kết quả (dự đoán , hoặc bài toán chứng minh khi đã cho biết kết quả). Thì ta nên sử dụng phương pháp này và hầu như thế nào cũng chứng minh được .
Ví dụ 1 : Tính tổng Sn =1+3+5 +... + (2n -1 )
Thử trực tiếp ta thấy : S1 = 1
S2 = 1 + 3 =22
S3 = 1+ 3+ 5 = 9 = 32
... ... ...
Ta dự đoán Sn = n2
Với n = 1;2;3 ta thấy kết quả đúng
giả sử với n= k ( k 1) ta có Sk = k 2 (2)
ta cần phải chứng minh Sk + 1 = ( k +1 ) 2 ( 3)
Thật vậy cộng 2 vế của ( 2) với 2k +1 ta có
1+3+5 +... + (2k – 1) + ( 2k +1) = k2 + (2k +1)
vì k2 + ( 2k +1) = ( k +1) 2 nên ta có (3) tức là Sk+1 = ( k +1) 2
theo nguyên lý quy nạp bài toán được chứng minh
vậy Sn = 1+3=5 + ... + ( 2n -1) = n2
Tương tự ta có thể chứng minh các kết quả sau đây bằng phương pháp quy nạp toán học .
1, 1 + 2+3 + .... + n =
2, 12 + 2 2 + ..... + n 2 =
3, 13+23 + ..... + n3 =
4, 15 + 25 + .... + n5 = .n2 (n + 1) 2 ( 2n2 + 2n – 1 )
![](https://rs.olm.vn/images/avt/0.png?1311)
kết quả đúng là 1,519821606041,bằng lời giải CASIO nha
TK CHO MK NHA BẠN
lan anh le trình bày số cụ thể chứ không phải ......41 đâu bn
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có 12 - 22 = - 3
32 - 42 = - 7
.................
20052 - 20062 = -4011
-{(4011+3)[(4011-3):4+1]:2} = -2013021
![](https://rs.olm.vn/images/avt/0.png?1311)
Tham khảo :
a) \(\hept{\begin{cases}x-y=14\\3x-4y=1\end{cases}}\)
b) \(\hept{\begin{cases}14x+27y=25\\4x+y=1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nếu đặt u = x 2 − 1 thì x 2 = u + 1 nên phương trình có dạng
( 2 + 2)u = 2(u + 1) − 2 (1)
Ta giải phương trình (1):
(1) ⇔ 2 u + 2u = 2u + 2 − 2
⇔ 2 u = 2 − 2
⇔ 2 u = 2 ( 2 − 1) ⇔ u = 2 − 1
⇔ x 2 − 1 = 2 − 1
⇔ x 2 = 2
⇔ x = 1