Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 (1,5 điểm) Để tham gia chương trình “ Tết no ấm cho học sinh vùng cao”, học sinh ba lớp 7A, 7B, 7C tổ chức gói bánh chưng. Số bánh chưng lớp 7A và 7B gói được tỉ lệ nghịch với 3 và 2 . Số bánh chưng lớp 7B và 7C gói được tỉ lệ nghịch với 7 và 5. Số bánh chưng lớp 7C gói được nhiều hơn lớp 7A là 22 chiếc . Hỏi cả 3 lớp gói được bao nhiêu chiếc bánh chưng để tham gia chương trình này? |
P/s: Đây à?
P = |x – 2015| + |x – 2016| + |x – 2017|
P = (|x – 2015| + |2017 – x|) + |x – 2016|
Vì |x – 2015| + |2017 – x| \(\ge\) |x – 2015 + 2017 – x| = 2 với mọi x
=> (|x – 2015| + |2017 – x|) + |x – 2016| \(\ge\) 2 + |x – 2016| \(\ge\) 2 với mọi x
=> P \(\ge\) 2 với mọi x
Dấu “=” xảy ra ó x = 2016
Vậy minP = 2 tại x = 2016
Lâu chưa làm nên không chắc lắm
Hai gốc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối một cạnh của góc kia.
Có cần mik nêu tính chất lun ko
* Định nghĩa:
Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.
a/b=c/d =>a/c=b/d
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)\(\Leftrightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\left(\frac{a+b}{b+d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow dpcm\)
Câu 1: B
Câu 2: C
Câu 3: D
Câu 4: C
Câu 5: A
Câu 6: B
Câu 7: D
Câu 8: A
Câu 9: A
Câu 10: B
\(\left(-3\right)^2+\sqrt{16}-3-\dfrac{\sqrt{81}}{\left|-3\right|}\\ =9+4-3-3\\ =7\)
Chứng tỏ rằng đa thức Q(x) = x4 + 2015x2 + 2016 không có nghiệm.
Ta có x4 \(\ge\)0 \(\forall\)x
và 2015.x2 \(\ge\)0 \(\forall\)x
->x4 + 2015x2 + 2016 \(\ge\)0 \(\forall\)x
hay đa thức Q(X) ko có nghiệm.