K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

mình làm cho bạn 3 lần mà lúc gửi thì bị mất mạng  khocroi

30 tháng 4 2016

Chờ tí mình làm cho

2 tháng 1 2021

ĐK: \(x\ne\pm1\)

\(\dfrac{x^2+mx+2}{x^2-1}=1\)

\(\Leftrightarrow x^2+mx+2=x^2-1\)

\(\Leftrightarrow mx=-3\)

Yêu cầu bài toán thỏa mãn khi \(\left[{}\begin{matrix}m=0\\-\dfrac{3}{m}=\pm1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\pm3\end{matrix}\right.\)

Vậy \(m=0;m=\pm3\Rightarrow A\)

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:

$x-1\geq |x^2-3x+2|\geq 0\Rightarrow |x-1|=x-1$. Do đó:

$x-1\geq |x^2-3x+2|$

$\Leftrightarrow |x-1|\geq |(x-1)(x-2)|$

$\Leftrightarrow |x-1|(1-|x-2|)\geq 0$

$\Leftrightarrow 1-|x-2|\geq 0$

$\Leftrightarrow -1\leq x-2\leq 1$

$\Leftrightarrow 1\leq x\leq 3$.

$\Rightarrow x\in [1;3]$

$b-a=2$ nên đáp án là D.

1 tháng 1 2021

phương trình này vô số nghiệm á bạn

đáp án là câu C nha

1 tháng 1 2021

sao ra vo so nghiem z

29 tháng 4 2017

Đã là BPT thì đề không được ghi f(x)=0 nha bạn mâu thuẫn quá!

f(x)=x2-2(m+2)x+2m2+10m+12(1)

Để f(x) lớn hơn 0 với mọi x thuộc R thì

\(\left\{{}\begin{matrix}\Delta'\ge0\\a>0\\\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\left(m+2\right)^2-2m^2-10m-12\ge0\\1>0\left(lđ\right)\end{matrix}\right.\)

<=>-m2-6m-8\(\ge\)0

<=>-(m+2)(m+4)\(\ge\)0

cho (m+2)(m+4)=0 <=> m=-2 hoặc m=-4

Bảng xét dấu:

x f(x) -∞ -4 -2 +∞ 0 0 - + -

Vậy m=[-4;-2]

29 tháng 4 2017

Cam on ban nha mk ghi lon

Trường hợp 1: m=0

=>-3<0(luôn đúng)

=>Nhận

Trường hợp 2: m<>0

\(\text{Δ}=\left(2m\right)^2-4\cdot m\cdot\left(-3\right)=4m^2+12m=4m\left(m+3\right)\)

Để phương trình có nghiệm đúng thì \(\left\{{}\begin{matrix}4m\left(m+3\right)< 0\\m< 0\end{matrix}\right.\Leftrightarrow-3< m< 0\)

Vậy: -3<m<=0

ĐK: \(x\ne2\)

\(2x+\dfrac{3}{2x-4}< 3+\dfrac{3}{2x-4}\\ \Leftrightarrow\dfrac{2x.\left(2x-4\right)+3}{2x-4}< \dfrac{3\left(2x-4\right)+3}{2x-4}\\ \Leftrightarrow4x^2-8x+3-6x+12-3< 0\\ \Leftrightarrow4x^2-14x+12< 0\\ \Leftrightarrow\dfrac{3}{2}< x< 2\)