Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 2+4+6+8+...+2x=156
2.(1+2+3+...+x)=156
1+2+3+...+x=156:2
1+2+3+...+x=78
Ta có: 1+2+3+...+x=x.(x+1)/2
Mặt khác: 1+2+...+x=78
Suy ra: x.(x+1)/2+78
x.(x+1)=78.2=156
Vì x và x+1 là 2 STN liên tiếp (1)
Có: 156=2^2.3.13=12.13 (2)
Từ (1)(2) suy ra: x=12 ( thỏa mãn điều kiện x là STN)
Vậy x=12 ( Thỏa mãn ĐKBT )
b. Ta có: P= 6n-3/4n-6= 3.(2n-3)+2/2.(2n-3)= 3.(2n-3)/2.(2n-3)+ 2/2n-3= 3/2+ 2/2n-3
Để 6n-3/4n-6 đạt GTLN khi 2/2n-3 đạt GTLN
Suy ra: 2n-3 là số nguyên dương nhỏ nhất
Mà số nguyên dương nhỏ nhất là 1
Suy ra: 2n-3=1
2n=4
n=2 (thỏa mãn điều kiên n là số nguyên)
Vậy với n=2, 6n-3/4n-6 đật GTLN là: 6.2-3/4.2-6 = 12-3/8-6 = 4
bạn làm rất đúng chúc mừng bạn đã làm bài rất đúng mình có lời khen !!! very very good 10 điển giành cho bạn ??
| x + 3 | \(\ge\)0
\(\Rightarrow\)2015 + | x + 3 | \(\ge\)2015
\(\Rightarrow\)B nhỏ nhất \(\Leftrightarrow\)B = 2015 \(\Leftrightarrow\)| x + 3 | = 0 \(\Leftrightarrow\)x = -3
Do I x + 3I \(\ge\)0 => Để B nhỏ nhất => I x+3I = 0
=> 2015 + |x + 3| = 2015 => I x+3 I = 0 => x = 3
Vậy giá trị nhỏ nhất của Biểu thức B = 2015 + |x + 3| là 2015 khi x = 3
Ta có: (x + 2)4 \(\ge\)0 với mọi x
|2y - 10| \(\ge\)0 với mọi y
=> (x + 2)4 + |2y - 10| \(\ge\)0
=> S = (x + 2)4 + |2y - 10| + 2017 \(\ge\)2017
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+2\right)^4=0\\\left|2y-10\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x=-2\\y=5\end{cases}}\)
Vậy GTNN của S = 2017 tại x = -2 và y = 5
a) để A là phân số thì x+1 khác không hay x khác -1, x thuộc Z
b) để A không là phân số suy ra x=1
c) nếu x=-5 thì A=\(\frac{-9}{-4}\)
d)để A là số nguyên thì 2X+1 chia hết x+1 suy ra 1 chia hết x+1 suy ra x=0:-2
e)để A đạt GTLN thf x+1 phải nguyên dương và bé nhất =1 vậy để A đạt GTLN thì x=0
a) ta có \(A\ge0\)
\(\Leftrightarrow\left|x-5\right|\ge0\)
=> \(A_{min}=0\) khi và chi khi x=5
b) \(B\ge0\\ \Leftrightarrow\left|5+x\right|\ge0\Leftrightarrow B_{min}=0\)
Khi và chỉ khi x=-5
Bài giải
\(B=\frac{4-x}{x-3}=\frac{3-x+1}{x-3}=\frac{3-x}{x-3}+\frac{1}{x-3}=-1+\frac{1}{x-3}\)
\(B\) đạt GTNN khi \(\frac{1}{x-3}\) là số nguyên âm nhỏ nhất
Mà \(\frac{1}{x-3}\ge-1\) \(\Rightarrow\text{ }\frac{1}{x-3}=-1\) \(\Rightarrow\text{ }x-3=-1\)\(\Rightarrow\text{ }x=2\)
\(\Rightarrow\text{ }B\ge-1+\left(-1\right)=-2\text{ }\)
\(\Rightarrow\text{ }MinB=-2\text{ khi }x=2\)