Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(A=\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}\)
\(\Rightarrow A=\left(1^2+2^2+..........+100^2\right)\)\(.\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{100.101}\right)\)
\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{101}\right)\)
\(\Rightarrow A=\left(1^2+2^2+.....+100^2\right).\left(\frac{100}{101}\right)\)(a)
Đặt \(M=\left(1^2+2^2+........+100^2\right)\)
\(\Rightarrow M=1.1+2.2+.....+100.100\)
\(\Rightarrow M=1.\left(2-1\right)+2.\left(3-1\right)+....+100.\left(101-1\right)\)
\(\Rightarrow M=\left(1.2-1\right)+\left(2.3-2\right)+.....+\left(100.101-100\right)\)
\(\Rightarrow M=\left(1.2+2.3+.....+100.101\right)-\left(1+2+......+100\right)\)
\(\Rightarrow M=\left(1.2+2.3+......+100.101\right)-5050\)(1)
Đặt \(N=1.2+2.3+....+100.101\)
\(\Rightarrow3.N=1.2.3+2.3.3+......+100.101.3\)
\(\Rightarrow3N=1.2.\left(3-0\right)+2.3.\left(4-1\right)+......+100.101.\left(102-99\right)\)
\(\Rightarrow3N=\left(1.2.3-0\right)+\left(1.2.3-2.3.4\right)+.......+\left(100.101.102-100.101.99\right)\)
\(\Rightarrow3N=100.101.102-0\)
\(\Rightarrow N=343400\)
Thay N = 343400 vào 1) ta được:
M = 343400 - 5050
=> M = 338350
Thay M = 338350 Vào (a) ta được:
A = 338350 . \(\frac{100}{101}\)
=> \(A=\frac{33835000}{101}\)
Vậy \(\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}=\frac{33835000}{101}=335000\)
b) Đặt \(B=\frac{2^2}{1.3}+\frac{3^2}{2.4}+..........+\frac{59^2}{58.60}\)
\(\Rightarrow B=\left(2^2+3^2+........+59^2\right).\left(\frac{1}{1.3}+\frac{1}{2.4}+.....+\frac{1}{58.60}\right)\)
Đặt \(G=2^2+3^2+.........+59^2\)VÀ \(H=\frac{1}{1.3}+\frac{1}{2.4}+.........+\frac{1}{58.60}\)
\(\Rightarrow G=2.2+3.3+.......+59.59\) VÀ \(2.H=\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{58.60}\)
Rồi bạn làm như ở phần a) ý
B = \(\frac{3^2}{2.4}+\frac{3^2}{4.6}+\frac{3^2}{6.8}+...+\frac{3^2}{198.200}\)
B = \(\frac{3^2}{2}.\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{3^2}{2}.\left(\frac{1}{4}-\frac{1}{6}\right)+\frac{3^2}{2}.\left(\frac{1}{6}-\frac{1}{8}\right)+...+\frac{3^2}{2}.\left(\frac{1}{198}-\frac{1}{200}\right)\)
B = \(\frac{3^2}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{198}-\frac{1}{200}\right)\)
B = \(\frac{9}{2}.\left(\frac{1}{2}-\frac{1}{200}\right)\)
B = \(\frac{9}{2}.\frac{99}{200}\)
B = \(\frac{891}{400}\)
D = 1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 + ... + 48 x 49
3D = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + 4 x 5 x 3 + ... + 48 x 49 x 3
3D = 1 x 2 x 3 + 2 x 3 x ( 4 - 1 ) + 3 x 4 x ( 5 - 2 ) + 4 x 5 x ( 6 - 3 ) + ... + 48 x 49 x ( 50 - 47 )
3D = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + 4 x 5 x 6 - 3 x 4 x 5 + ... + 48 x 49 x 50 - 47 x 48 x 49
3D = 48 x 49 x 50
D = ( 48 x 49 x 50 ) : 3
D = 39200
E = 12 + 22 + 32 + ... + 482
E = 1 x 1 + 2 x 2 + 3 x 3 + ... + 48 x 48
E = 1 x ( 2 - 1 ) + 2 x ( 3 - 1 ) + 3 x ( 4 - 1 ) + ... + 48 x ( 49 - 1 )
E = 1 x 2 - 1 + 2 x 3 - 2 + 3 x 4 - 3 + ... + 48 x 49 - 49
E = ( 1 x 2 + 2 x 3 + 3 x 4 + ... + 48 x 49 ) - ( 1 + 2 + 3 + ... + 49 )
Ta tính được vế trong ngoặc thứ nhất là 39200 , còn vế trong ngoặc thứ hai là 1225
thay vào ta được :
E = 39200 - 1225
E = 37975
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{100}}\)
\(\left(2+\frac{5}{6}\right)\div1\frac{1}{5}+\frac{-7}{12}\)
\(=\left(\frac{12}{6}+\frac{5}{6}\right)\div\frac{6}{5}-\frac{7}{12}\)
\(=\frac{17}{6}\div\frac{6}{5}-\frac{7}{12}\)
\(=\frac{17}{6}\times\frac{5}{6}-\frac{7}{12}\)
\(=\frac{85}{12}-\frac{7}{12}\)
\(=\frac{78}{12}=\frac{13}{2}\)
\(\left(15-6\frac{13}{18}\right)\div11\frac{1}{7}-2\frac{1}{8}\div1\frac{11}{40}\)
\(=9\frac{13}{18}\div\frac{78}{7}-\frac{17}{8}\div\frac{51}{40}\)
\(=\frac{175}{18}\div\frac{78}{7}-\frac{17}{8}\times\frac{40}{51}\)
\(=\frac{175}{18}\times\frac{7}{78}-\frac{5}{3}\)
\(=\frac{1225}{1404}-\frac{5}{3}\)
\(=\frac{1225}{1404}-\frac{2340}{1404}\)
\(=\frac{-1115}{1404}\)
a) \(\frac{7}{5}.\frac{-31}{125}.\frac{1}{2}.\frac{10}{17}.\frac{-1}{2^3}=\frac{7.\left(-31\right).1.10.\left(-1\right)}{5.2.125.17.2^3}=\frac{31.7}{17.125.2^3}=\frac{217}{17000}\)
b) \(\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).\left(\frac{-5}{12}+\frac{1}{4}+\frac{1}{6}\right)=\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).0=0\)
c) \(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{3.4.5...100}{2.3.4...99}=\frac{100}{2}=50\)
d) \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-99}{100}=\frac{-\left(1.2.3..99\right)}{2.3.4...100}=-\frac{1}{100}\)
e) \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}=\frac{\left(1.2.3..29\right).\left(3.4.5...31\right)}{\left(2.3.4...30\right).\left(2.3.4...30\right)}\)
\(=\frac{1.31}{30.2}=\frac{31}{60}\)
\(x-40\%x=3,6\)
\(\Rightarrow100\%x-40\%x=3,6\)
\(\Rightarrow60\%x=3,6\)
\(\Rightarrow\frac{60}{100}x=3,6\)
\(\Rightarrow x=6\)
\(3\frac{2}{7}x-\frac{1}{3}=-2\frac{3}{4}\)
\(\Rightarrow\frac{23}{7}x-\frac{1}{3}=-\frac{11}{4}\)
\(\Rightarrow\frac{23}{7}x=-\frac{33}{12}+\frac{4}{12}\)
\(\Rightarrow\frac{23}{7}x=\frac{29}{12}\)
\(\Rightarrow x=\frac{29}{12}:\frac{23}{7}=\frac{203}{276}\)
\(17.8+51.4=34.4+51.4=4\left(51+34\right)=4.84=336\) \(2.2.3.5.19=\left(2.5\right).\left(3.19\right).2=10.2.57=570.2=1140\) \(54.275+825.15+275=54.275+45.275+275=275\left(54+45+1\right)=100.275=27500\) \(\frac{167.198+98}{198.168-100}=\frac{167.198+98}{198.167+198-100}=\frac{167.198+98}{167.198+98}=1\)
\(\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{2020}=1-\frac{1}{2020}=\frac{2019}{2020}\)
a) 17 x 8 + 51 x 4
= 17 x 4 x 2 + 17 x 3 x 4
= 17 x 4 x ( 2 + 3 )
= 14 x 4 x 5
= 14 x 20
= 280
b) 2 x 2 x 3 x 5 x 19
= ( 2 x 5 ) x ( 3 x 19 ) x 2
= 10 x 57 x 2
= 570 x 2
= 1140
c) 54 x 275 + 825 x 15 + 275
= 54 x 275 + 275 x 3 x 15 + 275 x 1
= 54 x 275 + 275 x 45 + 275 x 1
= 275 x ( 54 + 45 + 1 )
= 275 x 100
= 27500
d) 100 - 99 + 98 - 97 + 96 - 95 + 94 - 93 + ... + 4 - 3 + 2
= (100 - 99) + (98 - 97) + (96 - 95) + (94 - 93) + ... + (4 - 3) + 2
= (1 + 1 + ... + 1) + 2
( 49 số 1 )
= 49 + 2
= 51
k) 1,5 + 2,5 + 3,5 + 4,5 + 5,5 + 6,5 + 7,5 + 8,5
= ( 1,5 + 8,5 ) + ( 2,5 + 7,5 ) + ( 3,5 + 6,5 ) + ( 4,5 + 5,5 )
= 10 + 10 + 10 + 10
= 40
2-2/19+2/43-2/1943
3-3/19+3/43-3/1943
=2(1-1/19+1/43-1/1943)
3(1-1/19+1/43-1/1943)
=2/3
Chúc bạn học tốt!!!!!
(x+1/4-1/3).(13/6-1/4)=7/46
(x+1/4-1/3).23/12=7/46
(x+1/4-1/3)=7/46:23/12
(x+1/4-1/3)=7/46.12/23
(x+1/4-1/3)=42/529
x+1/4=42/529+1/3
x+1/4=655/1587
x=655/1587-1/4
x=1033=/6348
vậy x=1033/6348
-22/10 nha!!!!!
Tử = 12 + 8 + 2 = 22
Mẫu = 2 + 18 - 30 = -10
=> Phân số trên là -22 / 10