\(^{3^{n+2}2^{n+2}+3^n-2^n}\)chia hết cho 10 với mọi n thuộc N*

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

ĐỀ BÀI SAI RỒI BẠN !

29 tháng 1 2017

Thầy mình ra bài này mà

4 tháng 7 2017

1, Ta có: \(\dfrac{2727}{2323}=\dfrac{27.101}{23.101}=\dfrac{27}{23}=\dfrac{27.1010101}{23.1010101}=\dfrac{27272727}{23232323}\)

2, \(3^{n+2}+2^{n+3}+3^n+2^{n+1}\)

\(=3^n.3^2+3^n+2^n.2^3+2^n.2\)

\(=3^n\left(3^2+1\right)+2^n\left(2^3+2\right)\)

\(=3^n.10+2^n.10=\left(3^n+2^n\right).10⋮10\forall n\in N\)

Vậy...

4 tháng 7 2017

1)\(\dfrac{27272727}{23232323}=\dfrac{2727.10001}{2323.10001}=\dfrac{2727}{2323}\)

2)

\(3^{n+2}+2^{n+3}+3^n+2^{n+1}\)

\(=3^n.3^2+2^n.2^3+3^n.1+2^n.2\)

\(=3^n.9+2^n.8+3^n.1+2^n.2\)

\(=3^n\left(9+1\right)+2^n\left(8+2\right)\)

\(=3^n.10+2^n.10\)

\(=10\left(3^n+2^n\right)⋮10\left(đpcm\right)\)

17 tháng 6 2017

a, Ta có:

\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)

\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)

Ta lại có:

\(9^n-2^n⋮9-2=7;2n.7⋮7\)

\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

24 tháng 7 2015

b) 3n+3 + 3n+1 + 2n+3 + 2n+2 =3n+3 + 3n+1 + 2n+3 + 2n+2 = 3n+1(32 + 1) + 2n+2(2 + 1) = 3n+1.10 + 2n+2.3 = 6(3n.5 + 2n+1) chia hết cho 6 (đpcm)

24 tháng 10 2016

a) tổng S bằng

(2014+4).671:2=677 039

b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n

→2n.(n+2013)\(⋮̸\)2

C)M=2+22+23+...+220

=(2+22+23+24)+...+(217+218+219+220)

=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)

=30.1+...+216.(2+22+23+24)

=30.1+...+216.30

=30(1+25+29+213+216)\(⋮\)5

 

 

23 tháng 10 2016

c, M= 2 + 22 + 23 +........220

Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5

Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)

= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )

= 30+24 .30 + 28. 30 +.........+ 216.30

= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5

Vậy M chia hết cho 5

22 tháng 1 2017

TH1 : Nếu n = 3k (k thuộc Z)

Suy ra n* 2 + n + 2= 3k*2 + 3k + 2 không chia hết cho 3

TH2 : Nếu n = 3k + 1 (k thuộc Z)

Suy ra n* 2 + n + 2 = (3k + 1)*2 + 3k + 1 + 2

                                 = ( 3k + 1) . (3k + 1) + 3k + 1 + 2

                                 = 3k (3k + 1) + 3k + 1 + 3k + 1 + 2

                                 = 9k*2 + 3k + 3k + 1 + 3k + 1 + 2

                                 = 9k*2 + 9k + 4 không chia hết cho 3

TH2 : Nếu n = 3k + 2 (k thuộc Z)

Suy ra n*2 + n + 2 = (3k + 2)*2 + 3k + 2 + 2

                           = (3k + 2) . (3k + 2) + 3k + 2 + 2

                           = 3k(3k + 2) + 2 (3k + 2) + 3k + 2 + 2

                           = 9k*2 + 6k + 6k + 4 + 3k + 2 + 2

                           = 9k*2 + 15k + 8 không chia hết cho 3

 Vậy ........................................................

Mk nhanh nhất k mk nha