Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\frac{a}{b}=\frac{c}{d}\) . Có \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\) ( Tính chất dãy tỉ số bằng nhau ) . Nên :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\left(\frac{a+b}{c+d}\right)^{2012}\left(1\right)\)
Mà \(\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\frac{a^{2012}}{b^{2012}}=\frac{c^{2012}}{d^{2012}}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(2\right)\).( T/c dãy tỉ số bằng nhau )
Từ \(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a+b}{c+d}\right)^{2012}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(đpcm\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c=2012\)
Theo t/c dãy tỉ số bằng nhau :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b\)
\(b=c\)
\(c=a\)
\(\Rightarrow a=b=c\).Mà \(a=2012\)
\(\Rightarrow a=b=c=2012\)
Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)
Mà a=2012 => b=c=2012
1/ (69.210+1210)+(219.273+15.49.94) = 29.39.210+310.220+219.39+5.3.218.38 = 219.39+310.220+219.39+5.218.39
= 218.39(2+3.22+5)=19.218.39
Áp dụng tính chất dãy tỉ số =nhau :
a/b=b/c=c/a=(a+b+c)/(a+b+c)=1
=> a=b=c =2012
Áp dụng tính chất của dãy tỉ số bằng nhau ta đc:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{1}{1}\)
=> a=b
b=c
=> a=b=c
mà a= 2012
=>b=c=2012
TH1 : a,b,c \(\ne\)0
Áp dụng tính chất DTSBN ta có :
\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{a+b}{b+c}\)
=> a+b=2012 , a+b=c => c=2012
b+c=a , b+c=2012 => a=2012
=> b= 0
=> a-b+c = 4024
TH2 : a=b=c=0
=> Vô lý dễ thấy vì a,b,c \(\ne\)0 từ các phân số đã cho
Vậy a-b+c = 4024
Th1 của mình có b=0 vô lý nhé bạn nên chắc không có a,b,c đâu