Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Theo đầu bài ta có:
\(A=x\left(x+2\right)+y\left(y-2\right)-2xy\)
\(=\left(x^2+2x\right)+\left(y^2-2y\right)-2xy\)
\(=\left(x^2+y^2-2xy\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)^2+2\left(x-y\right)\)
Do x - y = 7 nên:
\(=7^2+2\cdot7\)
\(=49+14\)
\(=63\)
Bài 2. Câu 1:
Đặt A = x2 + y2. Khi đó:
\(A-2xy=x^2+y^2-2xy\)
\(\Rightarrow A-2xy=\left(x-y\right)^2\)
Do xy = 4 ; x - y = 3 nên:
\(\Rightarrow A-2\cdot4=3^2\)
\(\Rightarrow A-8=9\)
\(\Rightarrow A=17\)
Ta có: x + y = -5 <=> (x + y)2 = (-5)2 = 25
hay: x2 + 2xy + y2 = 25 <=> 2xy = 25 - (x2 + y2) <=> 2xy = 25 - 11 <=> 2xy = 14 <=> xy = 7
=> 2x2y2 = 2 . (xy)2 = 2 . 72 = 98
Mặt khác: (x2 + y2)2 = 112 = 121
<=> x4 + 2x2y2 + y4 = 121
<=> x4 + y4 = 121 - 2x2y2
<=> x4 + y4 = 121 - 98
<=> x4 + y4 = 23
Vậy B = 23
x+y = -5 => (x + y)^2= x^2+y^2+2xy= (-5)^2= 25
=>2xy = 25 - 11 = 14
=>xy = 7
=>2xy.xy = 2x^2.y^2 = 14.7 =98
Ta có: (x^2 + y^2)^2 = 11^2 =121
x^4 + 2x^2.y^2 + y^4 =121
=>(x^4+y^4) + 98 =121
x^4 + y^4 = 23
Làm mẫu 1 phần nếu ko bít thì hỏi
Ta có: \(x-y=m\)
\(\Rightarrow\left(x-y\right)^2=m^2\)
\(\Leftrightarrow x^2-2xy+y^2=m^2\)
\(\Leftrightarrow x^2+y^2-2n=m^2\)
\(\Leftrightarrow x^2+y^2=m^2+2n\)
Ta có x2 + 1 >=2x . Dấu = xảy ra khi x = 1
Tương tự ta cũng có : y2 +4 >=4y. dấu = xảy ra khi y = 2 ; z2 +9 >=6z, dấu = xảy ra khi y = 3
vì x, y, z > 0, nên nhân từng vế các bđt này ta đc : ( x2 +1)( y2 +4)( z2 +9) >= 48xyz
Dấu = xảy ra khi x =1, y =2, z = 3
Vậy \(P=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^2}=\frac{36}{36}=1\)
a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)
\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=10^2-2.\left(-3\right)^2=82\)
b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=1.\left(1-2xy-xy\right)+3xy=1\)
Các câu còn lại tương tự
\(1.P=x^2\left(x+y\right)-xy\left(x-y\right)-x\left(y^2+1\right)\)
\(=x^3+x^2y-x^2y+xy^2-xy^2-x\)
\(=x^3-x=1^3-1=0\)
\(2,Q=\left(x-4\right)\left(x-2\right)-\left(x-1\right)\left(x-3\right)\)
\(=x^2-2x-4x+8-\left(x^2-3x-x+4\right)\)
\(=x^2-6x+8-x^2+4x-4\)
\(=-2x+4\)
\(=-2.\frac{7}{4}+4=-\frac{7}{2}+4=\frac{1}{2}\)
1. P = x2.(x + y) - xy.(x - y) - x.(y2 + 1)
P = x2.x + x2.y + (-xy).x + (-xy).(-y) + (-x).y2 + (-x).1
P = x3 + x2y - x2y + xy2 - xy2 - x
P = x3 + (x2y - x2y) + (xy2 - xy2) - x
P = x3 - x (1) (dạng này rút gọn cho đẹp) :))
Thay x = 1; y = 2006 vào (1), ta có:
P = x3 - x = 13 - 1
= 0
Vậy: ????
2. Q = (x - 4)(x - 2) - (x - 1)(x - 3)
Q = x.x + x.(-2) + (-4).x + (-4).(-2) + (-x).x + (-x).(-3) + (-1).x + (-1).(-3)
Q = x2 - 2x - 4x + 8 - x2 + 3x - x + 3
Q = (x2 - x2) + (-2x - 4x + 3x - x) + (8 + 3)
Q = -4x + 11 (1)
x = 1 3/4 = 7/4
Thay x = 7/4 vào (1), ta có:
Q = -4x + 11 = -4.(7/4) + 11
= 4
Vậy: ...
Q chả cần phải đổi mà cứ thế thay vào cũng đc
Bài 1:
a) (x+y)2=92=81
=> x2+2xy+y2=81
=> x2+2.14+y2=81
=> x2+y2=53
=> x2-2xy+y2=81-2.14=25
=> (x-y)2=25
=> x-y=5 hoặc x-y=-5
b) Câu a đã tính được x2+y2=53
c) Ta có: x3+y3=(x+y)(x2-xy+y2)=9(53-14)=9.39=351
Bài 2:
Ta có: \(x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1\)
Mà x+y=1
\(\Rightarrow1^2-4.1+1=-2\)
Bài 3:
Ta có: (x+y)3=x3+3x2y+3xy2+y3
= x3+y3+3xy(x+y)
Mà x+y=1 => (x+y)3=x3+y3+3xy=13=1
Bài 4:
Ta có: \(\left(x+y\right)^2=4^2=16\)
\(\Rightarrow x^2+2xy+y^2=16\Rightarrow10+2xy=16\)
\(\Rightarrow2xy=6\Rightarrow xy=3\)
Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=4.\left(10-3\right)\)
\(=4.7=28\)
Bài 5:
Ta có: \(x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=1\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy\)
\(=x^2-2xy+y^2=\left(x-y\right)^2=1\)
Mấy bài này đầu hè làm hết rồi:))
Bài 1:
a) \(xy=14\Rightarrow x=\frac{14}{y}\)
Thay vào: \(\frac{14}{y}+y=9\)
\(\Leftrightarrow y^2+14-9y=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=7\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}\)
+ Nếu: \(\hept{\begin{cases}x=7\\y=2\end{cases}}\Rightarrow x-y=5\)
+ Nếu: \(\hept{\begin{cases}x=2\\y=7\end{cases}}\Rightarrow x-y=-5\)
b) Ta có: \(x+y=9\)
\(\Leftrightarrow\left(x+y\right)^2=81\)
\(\Leftrightarrow x^2+2xy+y^2=81\)
\(\Rightarrow x^2+y^2=81-2xy=81-2.14=53\)
c) Ta có: \(x+y=9\)
\(\Leftrightarrow\left(x+y\right)^3=9^3\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=729\)
\(\Leftrightarrow x^3+y^3=729-3xy\left(x+y\right)=729-3.14.9=351\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left[\left(x+y\right)^2-2xy\right]^2-2\left(xy\right)^2\)
\(=\left[2^2+2.3\right]^2-2.\left(-3\right)^2\)
\(=\left[2^2+6\right]^2-2.9\)
\(=10^2-18\)
\(=100-18=82\)