Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a = b = c = d
=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)
D = 1 + 1 + 1 + 1 = 4
a, \(\frac{a}{b}=\frac{2a}{2b}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{2b}=\frac{c}{d}=\frac{2a+c}{2b+d}\)
Tương tự, bạn áp dụng tính chất dãy tỉ số bằng nhau là ra
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{a}=\frac{a+c+b+d}{b+d+c+a}=1\)
\(\Rightarrow a=b=c=d\)
Vậy \(A=\frac{2a-b}{2a+b}+\frac{2b-c}{2b+c}+\frac{2c-d}{2c+d}+\frac{2d-a}{2d+a}=\frac{1}{3}.4=\frac{4}{3}\)
Câu 1:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1.\)(T/c dãy tỷ số bằng nhau)
Suy ra:
\(\frac{a}{b}=1\Rightarrow a=b\)
\(\frac{b}{c}=1\Rightarrow b=c\)
\(\frac{c}{d}=1\Rightarrow c=d\)
\(\frac{d}{a}=1\Rightarrow d=a\)
Theo t/c bắc cầu => \(a=b=c=d\)
Câu 2: Do \(a=b=c=d\) nên
\(M=\frac{a+2a}{a}+\frac{b+2b}{b}+\frac{c+2c}{c}+\frac{d+2d}{d}=3+3+3+3=12\)
Ta dễ dàng thấy b2 = d2
a2 = c2
b2 = ac
Từ đó thấy a = b = c = d
Từ đó ta có M = 3 + 3 + 3 + 3 = 12
a) \(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\\\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\end{cases}}\)
\(\Rightarrow\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)
\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
b) Chứng minh tương tự
Ta có :\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)
=> (2a + b)(c - 2d) = (a - 2b)(2c + d)
=> 2ac - 4ad + bc - 2bd = 2ac + ad - 4bc - 2bd
=> -4ad + bc = ad - 4bc
=> -4ad - ad = -4bc - bc
=> -5ad = - 5bc
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\)(đpcm)
Theo bài ra ta có :
\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Leftrightarrow\left(2a+b\right)\left(c-2d\right)=\left(2c+d\right)\left(a-2b\right)\)
\(\Leftrightarrow2ac-4ad+bc-2db=2ca-4bc+da-2bd\)
\(\Leftrightarrow-5ad+5bc=0\Leftrightarrow-5ab=-5bc\)
\(\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
OK:
Trừ 1 ở mỗi tỉ số,ta có:
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1\)\(=\frac{a+b+c+2d}{d}-1\)
=>\(\frac{2a+b+c+d-a}{a}=\frac{a+2b+c+d-b}{b}\)\(=\frac{a+b+2c+d-c}{c}=\frac{a+b+c+2d-d}{d}\)
=>\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Do đó a=b=c=d
=>\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\)\(\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)
Vậy M=4
Ta có: a/b=b/c=c/d=d/a áp dụng tính chất dãy tỉ số bằng nhau ta được:
a/b=b/c=c/d=d/a=(a+b+c+d)/(a+b+c+d)=1
Do đó: a/b=1 suy ra a=b (1) ; b/c=1 suy ra b=c (2) ; c/d=1 suy ra c=d (3) ; d/a=1 suy ra d=a (4)
Từ (1),(2),(3),(4) ta được: a=b=c=d
Suy ra:P=(2a-a)/(a+a)+(2a-a)/(a+a)+(2a-a)/(a+a)+(2a+a)/(a+a)
=4.a/2a=4.1/2=2
Vậy P=2
Ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{2a}{2c}=\frac{b}{d}\Rightarrow\frac{a}{c}=\frac{2b}{2d}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{2a}{2c}=\frac{b}{d}=\frac{2a-b}{2c-d}\)\(\left(1\right)\)và \(\frac{a}{c}=\frac{2b}{2d}=\frac{a+2b}{c+2d}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{2a-b}{2c-d}=\frac{a+2b}{c+2d}\)
\(\Rightarrow\frac{2a-b}{a+2b}=\frac{2c-d}{c+2d}\)\(\left(đpcm\right)\)
Lập luận không chắc !
\(\text{Ta có: }\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{2b}{2d}\)
\(\text{Áp dụng t/c dãy tỉ số bằng nhau, ta có:}\)
\(\cdot\frac{2a}{2c}=\frac{b}{d}=\frac{2a-b}{2c-d}\)
\(\cdot\frac{a}{c}=\frac{2b}{2d}=\frac{a+2b}{c+2d}\)
\(\text{Mà }\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{2b}{2d}\)
\(\Rightarrow\frac{2a-b}{2c-d}=\frac{a+2b}{c+2d}\)
\(\text{Vậy: }\frac{2a-b}{a+2b}=\frac{2c-d}{c+2d}\left(\text{ĐPCM}\right)\)