K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

Ta có: a+b+c=0 => a+b=-c;b+c=-a;a+c=-b

=>\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)

27 tháng 3 2017

mày đi mà hỏi

17 tháng 12 2019

Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath

21 tháng 4 2016

Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính $A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$A=(1+ab )+(1+bc )+(1+ca )

Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính $A=\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)$A=(1+ab )+(1+bc )+(1+ca )

Khó quá do anh thien

21 tháng 4 2016

\(A=3+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

22 tháng 4 2016

vì a+b+c=0 => a+b= -c; b+c=-a; c+a=-b

(1+a/b)(1+b/c)(1+c/a)

=(a+b/b)(b+c/c)(a+c/a)

= (-c/b)(-a/c)(-b/a)

=-1

22 tháng 4 2016

Thay a = -2 ; b = 1 ; c = 1 ( vì -2 + 1 + 1 = 0 )

Ta có : \(A=\left(1+\frac{-2}{1}\right)\left(1+\frac{1}{1}\right)\left(1+\frac{1}{-2}\right)\)

           \(A=-1.2..\frac{1}{2}\)

           \(A=-1\)

\(1\)

5 tháng 3 2020

P/s: Bài toán này khá hay đó !!

Ta có : \(a\left(\frac{1}{b}+\frac{1}{c}\right)=b\left(\frac{1}{a}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{a^2c+a^2b}{abc}=\frac{b^2c+ab^2}{abc}=\frac{c^2b+c^2a}{abc}\)

Mà : \(a,b,c>0\)

\(\Rightarrow a^2c+a^2b=b^2c+ab^2=c^2b+c^2a\)

+) Xét : \(a^2c+a^2b=b^2c+ab^2\)

\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(ab+ca+cb\right)=0\)

\(\Leftrightarrow a-b=0\Leftrightarrow a=b\) (1)

( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )

+) Xét \(b^2c+ab^2=c^2b+c^2a\)

\(\Leftrightarrow bc\left(b-c\right)+a\left(b^2-c^2\right)=0\)

\(\Leftrightarrow\left(b-c\right)\left(bc+ab+ac\right)=0\)

\(\Leftrightarrow b-c=0\Leftrightarrow b=c\)(2)

( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )

Từ (1) và (2) \(\Rightarrow a=b=c\) (đpcm)

6 tháng 3 2020

 Thx nha !

3 tháng 3 2019

help me

=>\(\frac{a-b+c}{2b}+1=\frac{c-a+b}{2a}+1=\frac{a-c+b}{2c}+1\)

\(\Rightarrow\frac{a+b+c}{2b}=\frac{a+b+c}{2a}=\frac{a+b+c}{2c}\)

*TH1: nếu a+b+c=0 => a+b=-c; b+c=-a; c+a=-b

=>P=\(\left(\frac{b+c}{b}\right)\left(\frac{a+b}{a}\right)\left(\frac{c+a}{c}\right)\)

=\(\frac{-a}{b}.\frac{-c}{a}.\frac{-b}{c}=\frac{-\left(a.b.c\right)}{a.b.c}=-1\)

*TH2: Nếu a+b+c khác 0: thì a=b=c

Khi đó P=2.2.2=8

Vậy P= -1 hoặc 8

19 tháng 3 2018

\(\frac{a-b+c}{2b}=\frac{c-a+b}{2a}=\frac{a-c+b}{2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

=> 2a-2b+2c=2b <=> a+c=2b. Chia cả 2 vế cho c ta được: \(1+\frac{a}{c}=\frac{2b}{c}\)

Tương tự: \(1+\frac{c}{b}=\frac{2a}{b}\) và \(1+\frac{b}{a}=\frac{2c}{a}\)

=> \(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)=\frac{2a}{b}.\frac{2c}{a}.\frac{2b}{c}=\frac{8.abc}{abc}=8\)

Đáp số: 8

19 tháng 3 2018

tại sao 2a-2b+2c=2b lại suy ra a+c=2b vậy bạn

17 tháng 12 2019

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)

<=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1\)

<=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

<=> a + b + c = 0 hoặc a = b = c.

Th1: a + b + c = 0 

=> a + b = - c ; a + c = -b ; b + c = -a.

Thế vào P :

\(P=\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)

\(=\left(\frac{a+b}{b}\right)\cdot\left(\frac{b+c}{c}\right)\cdot\left(\frac{c+a}{a}\right)\)

\(=-\frac{c}{b}.\frac{\left(-a\right)}{c}.\frac{\left(-b\right)}{a}=-1\)

TH2: a = b = c. THế vào P 

\(P=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

Vậy: P = -1 nếu a + b + c = 0 

hoặc P = 8 nếu a = b = c.

17 tháng 12 2019

\(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)

Ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1=\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)

TH2: Nếu \(a+b+c\ne0\)\(\Rightarrow a=b=c\)

\(\Rightarrow\hept{\begin{cases}a+b=2b\\b+c=2c\\c+a=2a\end{cases}}\)\(\Rightarrow P=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)

Vậy \(P=-1\)hoặc \(P=8\)